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ABSTRACT

Machine learned models exhibit bias, often because the datasets used to train them
are biased. This presents a serious problem for the deployment of such technology,
as the resulting models might perform poorly on populations that are minorities
within the training set and ultimately present higher risks to them. We propose to
use high-fidelity computer simulations to interrogate and diagnose biases within
ML classifiers. We present a framework that leverages Bayesian parameter search
to efficiently characterize the high dimensional feature space and more quickly
identify weakness in performance. We apply our approach to an example domain,
face detection, and show that it can be used to help identify demographic biases
in commercial face application programming interfaces (APIs).

1 INTRODUCTION

Machine learned classifiers are becoming increasingly prevalent and important. Many systems con-
tain components that leverage trained models for detecting or classifying patterns in data. Whether
decisions are made entirely, or partially based on the output of these models, and regardless of the
number of other components in the system, it is vital that their characteristics are well understood.
However, the reality is that with many complex systems, such as deep neural networks, many of the
“unknowns” are unknown and need to identified (Lakkaraju et al.| 2016} 2017). Imagine a model
being deployed in law enforcement for facial recognition, such a system could encounter almost
infinite scenarios; which of these scenarios will the classifier have a blind-spot for? We propose an
approach for helping diagnose biases within such a system more efficiently.

Many learned models exhibit bias as training datasets are limited in size and diversity (Torralba &
Efros|, 2011} Tommasi et al., [2017)), or they reflect inherent human-biases (Caliskan et al.| [2017).
It is difficult for researchers to collect vast datasets that feature equal representations of every key
property. Collecting large corpora of training examples requires time, is often costly and is logisti-
cally challenging. Let us take facial analysis as an exemplar problem for computer vision systems.
There are numerous companies that provide services of face detection and tracking, face recogni-
tion, facial attribute detection, and facial expression/action unit recognition. However, studies have
revealed systematic biases in results of these systems (Buolamwini, 2017} Buolamwini & Gebrul
2018]), with the error rate up to seven times larger on women than men. Such biases in performance
are very problematic when deploying these algorithms in the real-world. Other studies have found
that face recognition systems misidentify [color, gender (women), and age (younger)] at higher error
rates (Klare et al.,|2012). Reduced performance of a classifier on minority groups can lead to both
greater numbers of false positives (in law enforcement this might lead to more frequent targeting) or
greater numbers of false negatives (in medicine this might lead to missed diagnoses).

Taking face detection as a specific example of a task, demographic and environmental factors all
influence the appearance of the face. Say we collected a large dataset of positive and negative
examples of faces within images. Regardless of how large the dataset is, these examples may not
be evenly distributed across each demographic group. This might mean that the resulting classifier
performs much less accurately on African-American people, because the training data featured few
examples. A longitudinal study of police departments revealed that African-American individuals
were more likely to be subject to face recognition searches than others |Garvie{ (2016).
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Figure 1: The composite loss function, which takes as input the simulation parameters 6, in order
to first produce a simulation s(6). This in turn is fed into a classification system to compute a loss
function characterizing whether the system performed correctly or poorly. We chose to model this
function as a Gaussian Process.

The concept of fairness through awareness was presented by Dwork et al. (2012), the principle being
that in order to combat bias we need to be aware of the biases and why they occur. This idea has
partly inspired proposals of standards for characterizing training datasets that inform consumers of
their properties|Gebru et al.| (2018)); Holland et al.|(2018)). However, while transparency is important,
it will not solve the fundamental problem of how to address biases caused by poor representation.
Nor will it help identify biases that might occur even in models trained using curated datasets.

Simulated data can be created in different ways. Generative adversarial networks (GANs) |(Goodfel-
low et al.[(2014) are becoming increasingly popular for synthesizing data |Shrivastava et al.| (2017).
For example, GANSs could be used to synthesize images of faces at different ages|Yang et al.[(2017).
However, GANs are inherently statistical models and are likely to contain some of the biases that
the data used to train them contain. A GAN model trained with only a few examples of faces with
darker skin tones will likely fail to produce a diverse set of high quality synthesized images with
this attribute. Parameterized graphics models are an alternative for training and testing vision mod-
els [Veeravasarapu et al.| (2015ajb; [2016)); |Vazquez et al.[(2014). Specifically, it has been proposed
that graphics models be used for performance evaluation Haralick| (1992)). As an example, this ap-
proach has been used for models for pedestrian detection |[Vazquez et al.|(2014). To the best of our
knowledge graphics models have not been employed for detecting demographic biases within vision
models. We believe that demographic biases in machine learned systems is significant enough a
problem to warrant further attention.

To address the problem of diagnosing bias in real world datasets we propose the use of high-fidelity
simulations [Shah et al.|(2018)) to interrogate models. The contributions of this paper are to: (1)
present a simulated model for generating synthetic facial data, (2) show how simulated data can be
used to identify the limitations of existing face detection algorithms, and (3) to present a sample
efficient approach that reduces the number of simulations required.

2 APPROACH

We propose to use simulation to help interrogate machine learned classifiers and diagnose biases.
The key idea here is that we repeatedly synthesize examples via simulation that have the highest
likelihood of breaking the learned model. By synthesizing such a set, we can then take a detailed
look at the failed examples in order to understand the biases and the blind spots that were baked
into the model in the first place. We leverage the considerable advancements in computer graphics
to simulate highly realistic inputs. In many cases, face detection algorithms are designed to be able
to detect faces that occupy as few as 36 x 36 pixels. The appearances of the computer generated
faces are as close to photo-realistic in appearance as is necessary to test the face detectors, and at
low resolutions we would argue that they are indistinguishable from photographs.

While simulated environments allow us to explore a large number of parameter combinations
quickly and systematically, varying lighting, head pose, skin type, etc. often require significant
computational resources. Furthermore, exhaustive search over the set of simulations is rendered
infeasible as each degree of freedom in simulation leads to exponentially increasing numbers of ex-
amples. Therefore, we need a learning method that can intelligently explore this parameter space in
order to identify regions of high failure rates.

In this work, we propose to apply Bayesian Optimization Brochu et al.|(2010)) to perform this param-
eter search efficiently. Formally, let’s denote 6 as parameters that spawn an instance of simulation
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s(0). This instance then is fed into the machine intelligence system in order to check whether the
system correctly identifies s(6). Consequently, we can define a composite function Loss(s(f)), that
captures the notion of how well the Al system handles the simulation instance generated when ap-
plying the parameters 6. Note that the function Loss(-) is similar to the loss functions used in training
classifiers (e.g. 0-1 loss, hinge loss etc.). Our goal then is to find diverse instances of 6 such that
the composite loss function attains values higher than a set threshold. Figure[I|graphically describes
such a composition.

Bayesian Optimization allows us to tackle this problem by first modeling the composite function
Loss(s(6)) as a Gaussian Process (GP) Rasmussen| (2004). Modeling as a GP allows us to quantify
uncertainty around the predictions, which in turn is used to efficiently explore the parameter space
in order to identify the spots that satisfy the search criterion. In this work, we follow the recommen-
dations in Snoek et al.|(2012), and model the composite function (0-1 loss) via a GP with a Radial
Basis Function (RBF) kernel, and use Expected Improvement (EI) as an acquisition function (which
directs sampling to areas where an improvement over the current optimal value is likely).

Simulated Agent. Within the AirSim Shah et al.| (2018) environment we created an agent torso.
The agent was placed in a room with multiple light sources (from windows, overhead lights and
spotlights). Pictures of the avatar are shown in Figure The skin type of the agent could be
varied continuously from a lighter to darker skin type (allowing us to mimic different levels on the
Fitzpatrick Classification Scale [Fitzpatrick| (1988))), and aging of the skin could be customized via
the textures. The agent’s facial position, facial actions (e.g., mouth opening or eye lids closing)
could be fully customized.

In this paper, our goal was to illustrate how simulated data can be used to identify and evaluate
biases within classifiers and not to exhaustively evaluate each face API’s performance with respect
to every facial expression or lighting configuration. However, our method could be used to do this
if exhaustive evaluation was the goal.

Parameter Space. We manipulated the following parameters in order to evaluate how the appear-
ance of the face impacted the success or failure of the face detection algorithms. The parameters
were varied continuously within the bounds specified below. Angles are measured about the frontal
position head position. For facial actions (mouth opening and eye lids closing) the mappings are
specified in Facial Action Coding System [Ekman et al.| (2002) intensities. Examples of changes in
appearance with these parameters are shown in Figure

Demographic Parameters:

Skin Type: From lighter (Fitzpatrick I) to darker skin types (Fitzpatrick VI).
Skin Age: From an unwrinkled complexion to a heavily wrinkled complexion.
Head Pose and Expression Parameters:

Head Pitch: From -85 degs (~ -1.5 rads) to 85 degs (~ 1.5 rads).

Head Yaw: From -145 degs (~ -2.5 rads) to 145 degs (~ 2.5 rads).

Mouth Open: Mouth closed (FACS intensity 0) to open (FACS intensity 5).
Eyes Closed: Eyes open (FACS intensity 0) to closed (FACS intensity 5).

3 RESULTS AND DISCUSSION

We compared five facial analysis APIs in our experiments. Microsoft, Google, IBM, Face++ and
Amazon all offer services for face detection. We used two approaches for searching our space
of simulated faces for face detection failure cases. The first was randomly sampling parameters
for generating face configurations and the second was using Bayesian optimization. We compared
these sampling methods for the different face detection APIs. This type of analysis would have been
difficult, if not impossible, without the ability to systematically synthesize data.

Figure [2] shows boxplots of the demographic parameters for faces correctly detected and faces
missed. The results are shown for the skin type on a normalized scale of O (lighter skin type, Fitz-
patrick I) to 1 (darker skin type, Fitzpatrick VI) and age on a normalized scale of 0 (unwrinkled) to
1 (heavily wrinkled). From left to right results illustrate the performance for the Microsoft, Face++,
Google, IBM and Amazon classifiers. When using random sampling the sample (or simulation) ef-
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Figure 2: Left) Cropped views of the face from our simulated environment and variations in appear-
ance with 1) skin type, ii) age, iii) head yaw, iv) head pitch, v) mouth open, vi) eyes closed. Right)
Distribution of each simulation parameter for successfully detected faces and missed detections. The
distribution for skin types and ages skews darker and older respectively for false negatives than for
true positives. The Bayesian optimization reveals this difference with fewer simulations, such that
given 800 samples the differences are apparent with BO and not with random sampling.
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ficiency for finding failure cases is significantly reduced compared to our Bayesian approach. After
800 samples 44% more failures (724 vs. 503) were found using Bayesian optimization.

Performance Across Skin Type and Age. First, let us discuss the performance (characterized by
true positives and false negatives) of the APIs with regard to the skin type and age appearance of
the subjects. Note that evaluating the false positive rate or recall performance does not make sense
here, because we are always synthesizing a face in each image, and thus we will never have any
false positives. Figure [2] shows that the detectors consistently failed more frequently on faces with
darker skin types and to a lesser extent on faces with older appearances. The missed detections were
heavily skewed towards the upper end of the skin type and age ranges. Overall, the IBM API skew
was the least extreme. This is probably due to the fact that the detectors were improvedﬂfollowing
the results presented in [Buolamwini & Gebrul (2018)) identifying biases within previous versions.
This result shows that paying attention to the training data used to create the models behind these
APIs can significantly mitigate the biases with the resulting models. While our results are only
based on one base facial model, they provide results that support prior work Buolamwini| (2017).
We would need further models with alternate bone structures to draw more conclusions about the
generalizability of these results, especially with regard to other demographic variables (e.g., gender).

Random vs. Bayesian Sampling. Using naive sampling techniques (e.g., random sampling or grid
search), the cost of search is exponential with the number of parameters. Consider that there are three
axes of head rotation, twenty-eight facial action units, thousands of possible facial expressions, and
millions of potential lighting configurations. Soon naive sampling techniques become impractical.
We show that a Bayesian optimization approach can significantly reduce the number of simulations
required to find an equal number of failure cases. In a simple experiment with six parameters,
the Bayesian approach led to an over 40% improvement in efficiency with respect to finding the
false negatives (missed detections). With a larger number of parameters this improvement will be
much more dramatic. In addition, for the IBM classifier (which had the fewest number of missed
detections overall), the improvement in sample efficiency was the most dramatic (over 500%), and
the exploration of the skin tone and age parameters was pushed to the highest magnitude regime
near a value of 1.0 (where the highest percentage of failures was found). This suggests that BO can
further improve efficiency as failures become more challenging to find.

'https://www.ibm.com/blogs/research/2018/02/mitigating-bias-ai-models/
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4 CONCLUSIONS

We present an approach that leverages highly-realistic computer simulations to interrogate and diag-
nose biases within ML classifiers. We propose the use of simulated data and Bayesian optimization
to intelligently search the parameter space. We have shown that it is possible to identify limits in
commercial face detection systems using synthetic data. We highlight bias in these existing classi-
fiers which indicates they perform poorly on darker skin types and on older skin texture appearances.
While our approach is easily extensible, we used one base facial model for our experimentation. This
limits the generalization of our conclusions and the ability for us to determine whether the effects
would be similar or different across genders and other demographic variables. Synthetic faces with
alternate bone structures would need to be created to test these hypotheses. While the initial cost of
creating the models is high, they can be used to generate large volumes of data, making synthetics
cost effective in the long-run.
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APPENDIX

RELATED WORK

Bias in Machine Learning. With more adoption of machine learned algorithms in real-world ap-
plications there is growing concern in society that these systems could discriminate between people
unfairlym In cases where these systems provide a reliable signal that the output has a low confi-
dence, these can be described as known unknowns. However, many learned models are being de-
ployed while their performance in specific scenarios is still unknown, or their prediction confidence
is not well characterized. These can be described as unknown unknowns.

Lakkaraju et al. |Lakkaraju et al.[| (2016; [2017) published an example of a method to help address
the discovery of unknowns in predictive models. First, the search-space is partitioned into groups
which can be given interpretable descriptions. Second, an explore-exploit strategy is used to navigate
through these groups systematically based on the feedback from an oracle (e.g., a human labeler).
Bansal and Weld proposed a new class of utility models that rewarded how well the discovered
unknown unknowns help explain a sample distribution of expected queries [Bansal & Weld| (2018).
We employ an explore-exploit strategy in our work, but rather than rely on an oracle we use synthetic
data.

Biases often result from unknowns within a system. Biases have been identified in real-world au-
tomated systems applied in domains from medicine |Zheng et al.[(2017) to criminal justice Angwin
et al.[(2016). While the exact nature of the problem is debated [Flores et al.| (2016) it is clear that
further research is needed to address bias in machine learned systems and actionable remedies to
help practitioners in their day to day work are necessary.

Numerous papers have highlighted biases within data typically used for machine learning |Caliskan
et al.| (2017); Torralba & Efros|(2011); [Tommasi et al.| (2017) and machine learned classifiers |Buo-
lamwini & Gebru| (2018). Biases in datasets can be caused in several ways. Torralba and Efros

Zhttps://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-prejudice/
3https://www.technologyreview.com/s/608986/forget-killer-robotsbias-is-the-real-ai-danger/
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(torralba201 lunbiased) identified selection bias, capture bias, and negative set bias as problems.
“Selection bias” is related to the tendency for certain types, or classes, of images to be included
in datasets in the first place. “Capture bias” is related to how the data are acquired and may be
influenced by the collectors’ preferences (e.g. in images of certain people, say celebrities, or points
of view, lighting conditions, etc.). Taking faces as an example, these biases typically manifest as a
greater proportion of images including white males, frontal head poses and smiles or neutral expres-
sions. “Negative set bias” is related to the examples in the dataset of the “rest of the world”. As an
example, if the negative examples included in a dataset of faces are skewed, the model will learn a
warped representation of what is not a face.

However, even if one were to make every effort to address these three types of bias, the problem
may still exist that artifacts created by humans contain the biases that human have without our ex-
plicit knowledge [Caliskan et al.| (2017). In our discussion, we will call this “human bias”. With
increasing frequency, data hungry machine learning classifiers are being trained on large-scale cor-
pora collected from Internet sources |Deng et al.|(2009); [Fabian Benitez-Quiroz et al.| (2016)) and/or
via crowdsourcing. Such data collection makes curation challenging as there are a vast number of
samples to label and sort. The Internet is a data source that is likely to be subject to “selection bias”,

ELINT3

“capture bias”, “negative set bias” and “human bias”.

Furthermore, Tommasi et al. tommasi2017deeper argue that more powerful feature descriptors (such
as those generated by a deep convolutional neural network (CNN) versus a simple hand crafted ap-
proach) may actually exacerbate the problem of bias and accentuate biases in the resulting classifier.
Even in the best case scenario, feature representations alone cannot intrinsically remove the negative
bias problem.

Thus there is still a need for approaches that help address the issues of bias within machine learning,
and this problem is becoming more acute. To this end, we propose a practical approach to use
high-fidelity simulations to diagnoses biases efficiently in machine vision classifiers.

Face Detection.

Face detection was one of the earliest applications of computer vision. Below we describe signif-
icant landmarks in the development of face detection algorithms. Earlier methods relied on rigid
templates with boosting learning methods commonly employed. Hand-crafted features used for
learning included Haar like features, local binary patterns and histograms of gradients. A major
landmark was the Viola-Jones |Viola & Jones| (2004) classifier based on Haar features. This work
presented a fast and accurate method and was widely used thanks to implementations in OpenCV
and other computing frameworks.

Deep CNNs have since surpassed the performance of previous methods [Farfade et al.| (2015); [Yang
et al.| (2015) and can be used to learn face detection and attribute classification together in a single
framework [Ranjan et al.| (2017). Face detection has matured into a technology that companies and
agencies are deploying in many real world contexts [Zafeiriou et al.| (2015)); these include safety
critical applications. Application programming interfaces (APIs) and software development kits
(SDKs) are two ways in which companies are exposing these models to other businesses and to
consumers. All the APIs we study in this paper use CNNs for face detection, making diagnosing
points of failure or bias challenging. Our approach for identifying biases is algorithm independent,
but we believe is particularly suited to models trained on large corpra and using powerful feature
descriptors.

Face detection is frequently the first step applied in screening images to include in datasets used for
subsequent facial analysis tasks (e.g., face recognition or expression detection). If the face detector
used for such tasks is biased, then the resulting data set is also likely to be biased. This was found
to be the case with the commonly used Labeled Faces in the Wild (LFW) dataset Huang & Learned-
Miller| (2014)). One study found it to be 78% male and 85% White Han & Jain|(2014). We believe a
simulation-based approach, using an artificial human could help characterize such biases and allow
researchers to account for them in the datasets they collect.



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

(a) 800 w w w \ \ \ \ (b) 800 >
[ Microsoft Dashed = Random Sampling [ Random Sampling L7
700} [l Face++ Solid = Bayesian Optimization gl 700+ [ Bayesian Optimization d
.
Il Google L
'
e0o HIBM i _ 600f L
° [0 Amazon Z1 2 L
(%] o w0
9 spof 27 1 2 soof .
= < ~ = //
) - ] 4
8 7 & 8 //
S 400( 7 @ 4007 g
i ZZ w p
[ - u— ’
S ~ ) .
> 300t 7 > 300t L
o Z <} ,
=2 // =2 ’
P .
200} . ] 200 v
27 L
7 Z, ’
100 Z > P 100 )y
Z - /
/ P .,
— 7
- L L L L 0 L L L L L L L
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
No. of Simulations No. of Simulations

Figure 3: Sample efficiency of finding false negatives (missed face detections). Note that the closer
a curve is to the main diagonal line (dotted black line in (b)), the better the curve’s performance. a)
Results for each of the face APIs individually. b) Results aggregated across all APIs. Red - Using
random sampling (this is the same as chance performance). Blue - Using Bayesian optimization.
Shaded area corresponds to the standard error.

5 FACE DETECTION APIS

The APIs all accept HTTP POST requests with URLs of the images or binary image data as a
parameter within the request. These APIs return JSON formatted data structures with the locations
of the detected faces. See the appendix for a summary of the APIs.

Unfortunately, detailed descriptions of the data used to train each of the face detection models were
not available. To the best of our knowledge, the models exposed through these APIs all use deep
CNN architectures and are trained on millions of images.

Microsoft: The documentation reports that a face is detectable when its size is 36 x 36 to 4096 x
4096 pixels and up to 64 faces can be returned for an image.

Face++: The documentation reports that a face is detectable when its size is 48 x 48 to 4096 x
4096 pixels. The minimal height (or width) of a face should be also be no less than 1/48 of the short
side of image. An unlimited number of faces can be returned per image.

Google: The documentation did not report minimum size or resolution requirements.

IBM: The documentation reports that the minimum pixel density is 32 x 32 pixels per inch, and the
maximum image size is 10 MB. IBM published a statement in response to the article by Buolamwini
and Gebru (buolamwini2017gender) in which they further characterize the performance of their
algorithmﬂ

Amazon: The documentation reports that the minimum pixel dimensions is 50 x 50 pixels (given
a resolution up to 1920 x 1080 pixels). Higher-resolution images can be processed but require a
larger minimum face size. It also reports that the API would detect up to 100 faces per image.

ADDITIONAL RESULTS

Figure [3|shows the cumulative number of failure cases identified with increasing numbers of simula-
tions (faces generated). The results are presented across all the APIs with the error bars representing
the standard error.

*http:/gendershades.org/docs/ibm.pdf
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FUTURE WORK AND LIMITATIONS

Bias in machine learned systems can be introduced in a number of ways. In complex models these
biases can be difficult to identify. Using data generated via a realistic synthetic environment we
have been able to identify demographic biases in a set of commercially available face detection
classifiers. These biases are consistent with previous results on photo datasets Buolamwini & Gebru
(2018). While the synthetic faces we used were not quite as realistic as photographs we believe that
this empirical finding supports the use of parametric simulations for this problem. A limitation of our
work is that the aging was only represented via texture changes. We plan to investigate GAN-based
approaches for synthesis and compare these to parametric synthesis. A hybrid of parametric and
statistical models could be used to create a more controllable but diverse set of synthesized faces.
Future work will consider retraining the models using synthetic data in order to examine whether
this can be used to combat model bias.
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