
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

UNIVERSAL MULTI-PARTY POISONING ATTACKS

Saeed Mahloujifar∗, Mohammad Mahmoody†, Ameer Mohammed‡

ABSTRACT

In a poisoning attack, an adversary tampers with a fraction of the training data T .
In the distributed multi-party setting, T might be gathered gradually from m data
providers P1, . . . , Pm who submit their shares of T interactively. A multi-party
poisoning adversary might control k of these m parties to hurt the learning.
In this work, we demonstrate universal multi-party poisoning attacks that adapt
and apply to any multi-party learning process with arbitrary interaction pattern
between the parties. More generally, we introduce and study (k, p)-poisoning at-
tacks in which an adversary controls k ∈ [m] of the parties, and for each corrupted
party Pi, the adversary submits some poisoned data T ′i on behalf of Pi that is still
“(1 − p)-close” to the correct data Ti (e.g., 1 − p fraction of T ′i is still honestly
generated). For k = m, this becomes the traditional notion of single-party poi-
soning, and for p = 1 it coincides with the standard notion of static corruption in
secure multi-party computation in cryptography.
We prove that for any “bad” property B of the final trained hypothesis h (e.g.,
h failing on a particular test example or having “large” risk) that has an arbitrar-
ily small constant probability of happening without the attack, there always is a
(k, p)-poisoning attack that increases the probability of B by Ω(p · k/m). Our
provable attacks achieve this by only using clean labels. At a technical level, we
prove a general result about biasing the average output of any bounded function
f(x1, . . . , xn) ∈ [0, 1] through a polynomial-time online attack in which each
input xi might be controlled by an adversary (who only knows the previously
sampled inputs) with marginal probability p. Previous works have studied inde-
pendent probabilities, preventing the application to multiparty corruption.
Though our adversary only controls the actual messages of k < m parties, it
needs fresh (new samples) from the data distribution of uncorrupted parties as
well. Extending our attacks to not rely on this feature, or finding defenses in such
settings remains as an interesting open question.

1 INTRODUCTION

Learning from a set T = {d1 = (a1, b1), . . . , dn = (an, bn)} of training examples in a way that
the predictions generalize to instances beyond T is a fundamental problem in learning theory. The
goal here is to produce a hypothesis h in such a way that h(a), with high probability, predicts the
“correct” label b, where the pair (a, b) = d is sampled from the target (test) distribution D. In
the most natural setting, the examples in the training data set T are also generated from the same
distribution D, however this is not always the case (e.g., due to noise in the data).

Poisoning attacks. Many previous works studying noise in the data allow it to be adversarial and
maliciously chosen against the learner (Valiant, 1985; Kearns & Li, 1993; Bshouty et al., 2002). A
tightly related and more recent approach to the problem of learning under adversarial noise is the
framework of so-called poisoning (aka causative) attacks (Barreno et al., 2006; Biggio et al., 2012;
Papernot et al., 2016), in which the adversary’s goal is not necessarily to completely prevent the
learning, but perhaps it simply wants to increase the risk of the hypothesis produced by the learning
process or make it more likely to fail on a particular test instance (i.e., getting a targeted poisoning
attack (Barreno et al., 2006; Shen et al., 2016)).
∗University of Virginia (saeed@virginia.edu).
†University of Virginia (mohammad@virginia.edu). Supported by NSF CAREER award CCF-

1350939, and University of Virginia’s SEAS Research Innovation Award.
‡University of Kuwait (ameer.mohammed@ku.edu.kw).

1

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Multi-party poisoning. In the distributed setting (McMahan & Ramage, 2017; McMahan et al.,
2016; Bonawitz et al., 2017; Konečnỳ et al., 2016), the training data T might be coming from
various sources; e.g., it can be generated by m data providers P1, . . . , Pm in an online way, while at
the end a fixed algorithm, called the aggregator G, generates the hypothesis h based on T . The goal
of P1, . . . , Pm is to eventually help G construct a hypothesis h that does well (e.g. in the case of
classification) in predicting the label b of a given instance a, where (a, b)← D is sampled from the
final test distribution. The data provided by each party Pi might even be of “different type”, so we
cannot simply assume that the data provided by Pi is necessarily sampled from the same distribution
D. To model this more general setting, we let Di model the distribution from which the training data
Ti (of Pi) is sampled. Poisoning attacks can naturally be defined in the distributed setting as well
(e.g., see (Fung et al., 2018; Bagdasaryan et al., 2018; Blanchard et al., 2017)) to model adversaries
who partially control the training data T with the goal of decreasing the quality of the generated
hypothesis. The central question of our work is then as follows.

What is the inherent power of poisoning attacks in the multi-party setting?

Answering the above question is critical to understand the limits of provable security against poi-
soning attacks in the multi-party setting.

1.1 OUR CONTRIBUTION

We first formalize a new general notion of multi-party poisoning. We then develop attacks for
cryptographic coin tossing protocols that imply data poisoning attacks in the multi-party setting.

New attack model: (k, p)-poisoning attacks. our first contribution of this work is to formalize
a general notion that covers multi-party poisoning attackers that corrupt k out of m data provider
parties and furthermore, for each message sent by a corrupted party, the adversary still generates
data that is “close” to the honestly generated data. More formally, a (k, p)-poisoning attacker Adv

can first choose to corrupt k of the parties. Then, if a corrupted P̃i is supposed to send the next
message, then the adversary will sample d ← D̃ for a maliciously chosen distribution D̃ that is
guaranteed to be p to the original distribution Di in total variation distance. Our (k, p)-poisoning
attacks include the so called “p-tampering” attacks of (Mahloujifar et al., 2018a) as special case by
letting k = m (m is the number of parties). Moreover, (k, p)-attacks also include the standard model
of k static corruption in secure multi-party computation (in cryptography) letting p = 1. Our main
result in this works is to prove the universal power of (k, p)-poisoning as follow. We show that in
anym-party learning protocol in which the produced hypothesis h has a bad propertyB (e.g., failing
on a particular target instance known to the adversary) with probability µ, then this probability can
be increased to µ′ = µ1−kp/m. For example, by corrupting half of the parties (i.e., p = 1, k = m/2)
the adversary can increase the probability of B from 1/100 to 1/10.

Universal nature of our attack. Our attacks are universal in the sense that they could be applied
to any learning algorithm for any learning task, and they are dimension-independent as they applied
to any data distribution. On the other hand, our universal attacks rely on an initial vulnerability of
arbitrary small constant probability that is then amplified through the poisoning attack. As a result,
although recent poisoning attacks (e.g., see (Koh et al., 2018)) obtain stronger bounds in their attack
against specific defenses, our attacks apply to any algorithm with any built in defenses.

Deriving attacks on federated learning as special case. Since we allow the distribution of each
party in the multi-party case to be completely dependent on that party, our attacks cover the case
of model poisoning in federated learning (Bagdasaryan et al., 2018; Bhagoji et al., 2018), in which
each party sends something other than their plain share of data, as special case. In fact, multiple
works have already demonstrated the power of poisoning attacks in the federated learning setting
(e.g., see (Fung et al., 2018; Bhagoji et al., 2018; Chen et al., 2018; 2017; Guerraoui et al., 2018; Yin
et al., 2018)). Some of these attacks obtain stronger quantitative bounds in their attacks, however
this is anticipated as these works investigate attacks on specific learners, while a crucial property of
our attack is that our attacks come with provable bounds and are universal in that they apply to any
learning task and any hypothesis class (including neural nets as special casse), so long as there is an
initial Ω(1) vulnerability (for some bad property) over the generated hypothesis.

Note that, our attacks actually do not need the exact history of examples that are used by parties,
and only need to know the updates sent by the parties during the course of protocol. Suppose an

2

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

uncorrected party randomizes its local model (e.g., for differential privacy purposes) and shares an
update ui with the server. Knowledge of ui is enough for our attacker. One might go even further
and ask what if the updates are sent in a secure/private way? Interestingly, our attack work in that
model too as it only needs to know the effect of the updates on the central model at the end of round
i− 1 (because all attack wants is to perform a random continuation on the intermediate model).

It also worth mentioning that our attack requires sampling oracles from distributions of all the par-
ties. This might seem that we are giving the adversary too much power. However, we think the right
way to define security of federated learning is by giving the adversary everything that hat might
be leaked to them. This way of defining security is inspired by cryptography. For instance, when
modeling the chosen plaintext security of encryption schemes, adversary is given access to an en-
cryption oracle, while one might question how realistic it is. Analogously, In federated learning, the
adversary can potentially gather some statistics about the distribution of other parties and learn them
over time. However, as mentioned above, we do not need to give adversary access to the actual data
of honest parties. Only the public effect of them on the shared model is needed.

Related work. Recent breakthroughs of Diakonikolas et al. (2016) and Lai et al. (Lai et al., 2016)
demonstrated the surprising power of robust distribution learning over poisoned training samples
with limited risk that does not depend on the dimension of the distribution (but still depends on the
fraction of poisoned data). These works led to an active line of work (e.g., see (Charikar et al., 2017;
Diakonikolas et al., 2017; Balakrishnan et al., 2017; Diakonikolas et al., 2018b;a; Prasad et al., 2018;
Diakonikolas et al., 2018c;a; Prasad et al., 2018; Charikar et al., 2017; Diakonikolas et al., 2018b)
and references therein). On the negative side, Mahloujifar, Mahmoody and Diochnos (Mahloujifar
& Mahmoody, 2017; Mahloujifar et al., 2018b) studied (universal) poisoning attacks on single party
setting. These attacks were also universal. Similarly, these attacks also rely on an initial vulnerability
of arbitrary small constant probability that is then amplified through the poisoning attack. That is
why such universal attacks do not contradict the positive results mentioned above.

2 MULTI-PARTY POISONING: DEFINITIONS AND THE MAIN RESULT

Notation. We use bold font (e.g., x,S,α) to represent random variables, and usually use same non-
bold letters for denoting samples from these distributions. We use d ← D to denote the process
of sampling d from the random variable D. By E[α] we mean the expected value of α over the
randomness of α, and by V[α] we denote the variance of random variable α. We might use a
“processed” version of α, and use E[f(α)] and V[f(α)] to denote the expected value and variance,
respectively, of f(α) over the randomness of α. A learning problem (A,B,D,H) is specified by
the following components. The set A is the set of possible instances, B is the set of possible labels,
D is distribution over A× B.1 The set H ⊆ BA is called the hypothesis space or hypothesis class.
An example s is a pair s = (a, b) where x ∈ A and y ∈ B.
Definition 2.1 (Multi-party learning protocols). An m-party learning protocol Π for the m-party
learning problem (D,H) consists of an aggregator function G and m (interactive) data providers
P = {P1, . . . , Pm}. For each data provider Pi, there is a distribution Di ∈ D that models the
(honest) distribution of labeled samples generated by Pi, and there is a final (test) distribution D
that P, G want to learn jointly. The protocol runs in r rounds and at each round, based on the
protocol Π, one particular data owner Pi broadcasts a single labeled example (a, b)← Di.2 In the
last round, the aggregator function G maps the the messages to an output hypothesis h ∈ H.

Now, we define poisoning attackers that target multi-party protocols. We formalize a more general
notion that covers both p-tampering attackers as well as attackers who (statically) corrupt k parties.
Definition 2.2 (Multi-party (k, p)-poisoning attacks). A (k, p)-poisoning attack against an m-party
learning protocol Π is defined by an adversary Adv who can control a subset C ⊆ [m] of the parties
where |C| = k. The attacker Adv shall pick the set C at the beginning. At each round j of the
protocol, if a data provider Pi ∈ C is supposed to broadcast the next example from its distribution
Di, the adversary can partially control this sample using the tampered distribution D̃ such that

1By using joint distributions overA×B, we jointly model a set of distributions overA and a concept class
mapping A to B (perhaps with noise and uncertainty).

2We can directly model settings where more data is exchanged in one round, however, we stick to the
simpler definition as it loses no generality.

3

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

|D̃ −Di| ≤ p in total variation distance. Note that the distribution D̃ can depend on the history
of examples broadcast so far, but the requirement is that, conditioned on this history, the malicious
message of adversary modeled by distribution D̃, is at most p-statistically far from Di. We use ΠAdv

to denote the protocol in presence of Adv. We also define the following notions. Adv is a plausible
adversary, if it always holds that Supp(D̃) ⊆ Supp(Di). Adv is efficient if it runs in polynomial
time in the total length of the messages exchanged during the protocol (from the beginning till end).

We now formally state our result about the power of (k, p)-poisoning attacks.
Theorem 2.3 (Power of efficient multi-party poisoning). For an m-party protocol Π for parties
P = {P1, . . . , Pm}, letB be any (polynomial-time testable) predicate that happens over the learned
hypothesis with probability µ when no attack happens. Then and any p ∈ [0, 1] and k ∈ [m],
there is a plausible (i.e., clean-label), (k, p)-poisoning attack Adv that runs in time poly(m/ε) and
increases the probability of the bad predicate B from µ to µ′ = µ1−kp/m − ε.

Before proving Theorem 2.3, we need to develop our main result about the power of generalized
p-tampering attacks. In Section 3, we develop such tools and show how to prove Theorem 2.3.

3 MULTI-PARTY POISONING THROUGH GENERALIZED P-TAMPERING

To prove our Theorem 2.3 we interpret the multi-party learning protocol as a coin tossing protocol
in which the final bit is 1 if h has the (bad) property B. We define a corresponding attack model
in coin tossing protocols that can be directly used to obtain the desired goal; this model is called
generalized p-tampering. Below, we formally state our main result about the power of generalized
p-tampering attacks. we start by formalizing some notation and basic definitions.

Notation. By x ≡ y we denote that the random variables x and y have the same distributions.
Unless stated otherwise, by using a bar over a variable, we emphasize that it is a vector. By
x ≡ (x1,x2, . . . ,xn) we refer to a joint distribution over vectors with n components. For a joint
distribution x ≡ (x1, . . . ,xn), we use x≤i to denote the joint distribution of the first i variables
x ≡ (x1, . . . ,xi). Also, for a vector x = (x1 . . . xn) we use x≤i to denote the prefix (x1, . . . , xi).
For a randomized algorithm L(·), by y ← L(x) we denote the randomized execution of L on input x
outputting y. For a distribution (x,y), by (x | y) we denote the conditional distribution (x | y = y).
By Supp(D) = {d | Pr[D = d] > 0} we denote the support set of D. By TD(·) we denote an
algorithm T (·) with oracle access to a sampler for D that upon every query returns fresh samples
from D. By Dn we denote the distribution that returns n iid samples from D. Let x ≡ (x1, . . . ,xn)
be an arbitrary joint distribution. We call x≤i = (x1, . . . , xi) a valid prefix for x if there exist
xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(x). ValPref(x) denotes the set of valid prefixes of x.
Definition 3.1 (Tampering with random processes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint
distribution. We call a (potentially randomized and possibly computationally unbounded) algorithm
T an (online) tampering algorithm for x if given any valid prefix x≤i−1 ∈ ValPref(x), it holds that

Pr
xi←T(x≤i−1)

[x≤i ∈ ValPref(x)] = 1 .

Namely, T(x≤i−1) outputs xi such that x≤i is again a valid prefix. We call T an efficient tampering
algorithm for x if it runs in time poly(N) where N is the maximum bit length of any x ∈ Supp(x).
Definition 3.2 (Online samplers). We call OnSam an online sampler for x ≡ (x1, . . . ,xn) if for all
x≤i−1 ∈ ValPref(x), OnSam(n, x≤i−1) ≡ xi. We call x ≡ (x1, . . . ,xn) online samplable if it has
an online sampler that runs in time poly(N) where N is maximum bit length of any x ∈ Supp(x).

Notation for tampering distributions. Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution
and T a tampering algorithm for x. For any subset S ⊆ [n], we define y ≡ 〈x ‖T, S〉 to be the
joint distribution that is the result of online tampering of T over set S, where y ≡ (y1, . . . ,yn) is
sampled inductively as follows. For every i ∈ [n], suppose y≤i−1 is the previously sampled block.
If i ∈ S, then the ith block yi is generated by the tampering algorithm T(y≤i−1), and otherwise, yi
is sampled from (xi | xi−1 = y≤i−1). For any distribution S over subsets of [n], by 〈x ‖T,S〉 we
denote the random variable that can be sampled by first sampling S ← S and then y ← 〈x ‖T, S〉.
Definition 3.3 (p-covering). Let S be a distribution over the subsets of [n]. We call S a p-
covering distribution on [n] (or simply p-covering, when n is clear from the context), if for all
i ∈ [n],PrS←S[i ∈ S] = p. (Note that i ∈ S and j ∈ S could be correlated events.)

4

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

The following theorem states the power of generalized p-tampering attacks.
Theorem 3.4 (Biasing through generalizing p-tampering). Let S be a p-covering distribution on
[n], x ≡ (x1, . . . ,xn) be a joint distribution, f : Supp(x) 7→ [0, 1], and µ = E[f(x)]. Then, for
any ε ∈ [0, 1], there exists a tampering algorithm Tε that, given oracle access to f and any online
sampler OnSam for x, it runs in time poly(N/ε), where N is the bit length of any x ← x, and for
yε ≡ 〈x ‖Tf,OnSam

ε ,S〉, it holds that E [f(yε)] ≥ µ−p · E
[
f(x)1+p

]
− ε .

Special case of Boolean functions. When the function f is Boolean, we get µ−p · E[f(x)1+p] =
µ1−p ≥ µ(1 + Ωµ(p)), which matches the bound proved in (Ben-Or & Linial, 1989) for the special
case of p = k/n for integer k ∈ [n] and for S that is uniformly random subset of [n] of size k. (The
same bound for the case of 2 parties was proved in (Haitner & Omri, 2014) with extra properties).
Even for this case, compared to (Ben-Or & Linial, 1989; Haitner & Omri, 2014) our result is more
general, as we can allow S with arbitrary p ∈ [0, 1] and achieve a polynomial time attack given
oracle access to an online sampler for x. The work of (Haitner & Omri, 2014) also deals with
polynomial time attackers for the special case of 2 parties, but their efficient attackers use a different
oracle (i.e., OWF inverter), and it is not clear whether or not their attack extend to the case of more
then 2 parties. Finally, both (Ben-Or & Linial, 1989; Haitner & Omri, 2014) prove their bound for
the geometric mean of the averages for different S ← S, while we do so for their arithmetic mean,
but we emphasize that this is enough for all of our applications.

Proving Theorem 3.4. The construction below describes the biasing algorithm of our Theorem 3.4.
Construction 3.5 (k-rejection-sampling tampering). Let x = (x1, . . . ,xn) be a joint distribution
and f : Supp(x) 7→ [0, 1]. The k-rejection sampling tampering algorithm RejSamf

k works as fol-
lows. Given the y≤i−1 ∈ ValPref(x), the tampering algorithm would do the following k times:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. Let s = f(y1, . . . , yn); with probability s output yi, otherwise go to Step 1.

If no yi was output during any of the k iterations, output a fresh sample yi ← (xi | y≤i−1).

The output distribution of RejSamk on any input, converges to the rejections sampling tampering
algorithm RejSam for sufficiently large k →∞.

In the full version of this paper, we prove the following claim which proves Theorem 2.3.
Claim 3.6. Let x = (x1, . . . ,xn) be a joint distribution and f : Supp(x) 7→ [0, 1]. For any
ε ∈ [0, 1], let k ≥ 16 ln(2n/ε)

ε2µ2 . Then RejSamk runs in time O(k) = poly(N/(ε · µ)), where N ≥ n

is the total bit-length of representing x, and for z ≡ 〈x ‖RejSamf,OnSam
k ,S〉 it holds that

E[f(z)] ≥ µ−p · E[f(x)1+p]− ε .

Sketch of deriving Theorem 2.3 from Theorem 3.4. For a subset C ⊆ [m] let PC = {Pi; i ∈ C}
and RC be the subset of rounds where one of the parties in PC sends an example. Also for a subset
S ⊆ [n], we define Bion(S, p) to be a distribution over all the subsets of S, where each subset
S′ ⊆ S hast the probability p|S

′| · (1− p)|S|−|S′|. Now, consider the covering S of the set [n] which
is distributed equivalent to the following process. First sample a uniform subset C of [m] of size k.
Then sample and output a set S sampled from Bion(RC , p). S is clearly a (p · km)-covering. We
use this covering to prove the theorem. For j ∈ [n] let w(j) be the index of the provider at round j
and let Dw(j) be the designated distribution of the jth round and let x = Dw(1) × · · · ×Dw(n).

We define a function f : Supp(x) → {0, 1}, which is a Boolean function and is 1 if the output of
the protocol has the property B, and otherwise it is 0. Now we use Theorem 3.4. We know that S
is a (p · km)-covering for [n]. Therefore of Theorem 3.4, there exist an poly(m/ε) time tampering
algorithm Tε that changes x to y ≡ 〈x ‖Tf,OnSam

ε ,S〉 where E[f(y)] ≥ E[f(y)]1−pk/m − ε.
By an averaging argument, we can conclude that there exist a set C ∈ [m] of size k for which
the distribution Bion(RC , p) produces average output at least E[f(y)]1−pk/m − ε. Note that the
measure of empty set in Bion(RC , p) is exactly equal to 1 − p which means with probability
1 − p the adversary will not tamper with any of the blocks, therefore, the statistical distance |x −
〈x ‖Tf,OnSam

ε ,Bion(RC , p)〉| is at most p. This concludes the proof.

5

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

REFERENCES

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. arXiv preprint arXiv:1807.00459, 2018.

Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computationally efficient robust
sparse estimation in high dimensions. In Conference on Learning Theory, pp. 169–212, 2017.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, pp. 16–25. ACM, 2006.

M. Ben-Or and N. Linial. Collective coin flipping. Randomness and Computation, 5:91–115, 1989.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated
learning through an adversarial lens. arXiv preprint arXiv:1811.12470, 2018.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. In Proceedings of the 29th International Coference on International Conference on Ma-
chine Learning, pp. 1467–1474. Omnipress, 2012.

Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries: Byzan-
tine tolerant gradient descent. In Advances in Neural Information Processing Systems, pp. 119–
129, 2017.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191. ACM, 2017.

Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz. PAC learning with nasty noise. Theoretical
Computer Science, 288(2):255–275, 2002.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 47–60. ACM,
2017.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In International Conference on Machine
Learning, pp. 902–911, 2018.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial set-
tings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):44, 2017.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high dimensions without the computational intractability. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pp. 655–664. IEEE, 2016.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for robust
estimation of high-dimensional Gaussians and Gaussian mixtures. In Foundations of Computer
Science (FOCS), 2017 IEEE 58th Annual Symposium on, pp. 73–84. IEEE, 2017.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and Alistair Stew-
art. Sever: A robust meta-algorithm for stochastic optimization. arXiv preprint arXiv:1803.02815,
2018a.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation
and learning mixtures of spherical Gaussians. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1047–1060. ACM, 2018b.

Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds for
robust linear regression. arXiv preprint arXiv:1806.00040, 2018c.

6

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866, 2018.

Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in
byzantium. In International Conference on Machine Learning, pp. 3518–3527, 2018.

Iftach Haitner and Eran Omri. Coin flipping with constant bias implies one-way functions. SIAM
Journal on Computing, 43(2):389–409, 2014.

Michael J. Kearns and Ming Li. Learning in the Presence of Malicious Errors. SIAM J. on Comput-
ing, 22(4):807–837, 1993.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. arXiv preprint arXiv:1811.00741, 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pp. 665–674.
IEEE, 2016.

Saeed Mahloujifar and Mohammad Mahmoody. Blockwise p-Tampering Attacks on Cryptographic
Primitives, Extractors, and Learners. In Theory of Cryptography Conference, pp. 245–279.
Springer, 2017.

Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. Learning under p-Tampering
Attacks. In ALT, pp. 572–596, 2018a.

Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. Learning under p-tampering
attacks. In Algorithmic Learning Theory, pp. 572–596, 2018b.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning with-
out centralized training data. Google Research Blog, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the science of
security and privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016.

Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust esti-
mation via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

Shiqi Shen, Shruti Tople, and Prateek Saxena. A uror: defending against poisoning attacks in
collaborative deep learning systems. In Proceedings of the 32nd Annual Conference on Computer
Security Applications, pp. 508–519. ACM, 2016.

Leslie G. Valiant. Learning disjunctions of conjunctions. In IJCAI, pp. 560–566, 1985.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498, 2018.

7

	Introduction
	Our Contribution

	Multi-Party Poisoning: Definitions and the Main Result
	Multi-Party Poisoning through Generalized p-Tampering

