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ABSTRACT

We might hope that when faced with unexpected inputs, well-designed software
systems would fire off warnings. Machine learning (ML) systems, however, which
depend strongly on properties of their inputs (e.g. the i.i.d. assumption), tend to
fail silently. This paper explores the problem of building ML systems that fail
loudly, investigating methods for detecting dataset shift and identifying exemplars
that most typify the shift. We focus on several datasets and various perturbations
to both covariates and label distributions with varying magnitudes and fractions of
data affected. Interestingly, we show that while classifier-based methods perform
well in high-data settings, they perform poorly in low-data settings. Moreover,
across the dataset shifts that we explore, a two-sample-testing-based approach,
using pre-trained classifiers for dimensionality reduction performs best.

1 INTRODUCTION

Even subtle changes in the data distribution can destroy the performance of otherwise state-of-the-art
classifiers, a phenomenon exemplified by adversarial examples (Szegedy et al., 2013; Zügner et al.,
2018). When decisions are made under uncertainty, even shifts in the label distribution can signif-
icantly compromise accuracy (Zhang et al., 2013; Lipton et al., 2018). Unfortunately, in practice,
ML pipelines rarely inspect incoming data for signs of distribution shift, and for detecting shift in
high-dimensional real-world data, best practices have not been established yet1. The first indications
that something has gone awry might come when customers complain.

This paper investigates methods for efficiently detecting distribution shift, a problem naturally cast
as two-sample testing. We wish to test the equivalence of the source distribution (from which train-
ing data is sampled) and target distribution (from which real-world data is sampled). For simple
univariate distributions, such hypothesis testing is a mature science. One might be tempted to use
off-the-shelf methods for multivariate two-sample tests to handle high-dimensional data but these
kernel-based approaches do not scale with the dataset size and their statistical power decays badly
when the ambient dimension is high (Ramdas et al., 2015).

For ML practitioners, another intuitive approach might be to train a classifier to distinguish between
examples from source and target distributions. We can then look to see if the classifier achieves sig-
nificantly greater than 50% accuracy. Analyzing the simple case where one wishes to test the means
of two Gaussians, Ramdas et al. (2016) recently made the intriguing discovery that the power of a
classification-based strategy using Fisher’s Linear Discriminant Analysis classifier achieves mini-
max rate-optimal performance. However, to date, we know of no rigorous empirical investigation
characterizing classifier-based approaches to recognize dataset shift in the real high-dimensional
data distributions with no known parametric form on which modern machine learning is routinely
deployed. Providing this analysis is a key contribution of this paper. To avoid confusion, we will
denote any source-vs-target classifier a domain classifier and refer to the original classifier, (trained
on source data) to predict the classes as the label classifier.

∗Work done while a visiting research scholar at Carnegie Mellon University.
1TensorFlow’s data validation tools only compare summary stats of training vs incoming data—

https://www.tensorflow.org/tfx/data_validation/get_started#checking_data_
skew_and_drift
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Figure 1: Our pipeline for detecting dataset shift. We consider various choices for how to represent
the data and how to perform two-sample tests.

A key benefit of the classifier-based approach is that the domain classifier reduces dimensionality
to a single dimension, learned precisely for the purpose of discriminating between source and target
data. However, a major drawback is that deep neural networks, the precise classifiers that are effec-
tive on the high-dimensional data that interests us, require large amounts of training data. Adding
to the problem, the domain-classifier approach requires partitioning our (scarce) target data using,
e.g., half for training and leaving only the remainder for two-sample testing. Thus, as an alternative
we also explore the black box shift detection (BBSD) approach due to Lipton et al. (2018), which
addresses shift detection under the label shift assumption. They show that if one possesses an off-
the-shelf label classifier f(x) with an invertible confusion matrix (verifiable on training data), then
detecting that the source distribution p is different from the target distribution q requires only detect-
ing that p(f(x)) 6= q(f(x)). This insight enables efficient shift detection, using a pre-trained (label)
classifier for dimensionality reduction.

Building on these ideas of combining (black-box) dimensionality reduction with subsequent two-
sample testing, we explore a range of dimensionality reduction techniques and compare them under
a wide variety of shifts (Figure 1 illustrates our general framework). Interestingly, we show (empir-
ically) that BBSD works surprisingly well under a broad set of shifts, outperforming other methods,
even when its assumptions are not met.

Related work Given just one example from the test data our problem simplifies to anomaly detec-
tion, surveyed thoroughly by Chandola et al. (2009); Markou & Singh (2003). Popular approaches to
anomaly detection include density estimation (Breunig et al., 2000), margin-based approaches such
as one-class SVMs (Schölkopf et al., 2000), and the tree-based isolation forest method due to (Liu
et al., 2008). Recently, GANs have been explored for this task (Schlegl et al., 2017). Given simple
streams of data arriving in a time-dependent fashion where the signal is piece-wise stationary, with
stationary periods separated by abrupt changes, the problem of detecting a dataset shift becomes the
classic time series problem of change point detection, with existing methods summarized succinctly
in an excellent survey by Truong et al. (2018). An extensive literature addresses dataset shift in
machine learning, typically in the larger context of domain adaptation, often through importance-
weighted risk minimization. Owing to the impossibility of correcting for shift absent assumptions
(Ben-David et al., 2010), these papers often assume either covariate shift q(x, y) = q(x)p(y|x)
(Shimodaira, 2000; Sugiyama et al., 2008; Gretton et al., 2009) or label shift q(x, y) = q(y)p(x|y)
(Saerens et al., 2002; Chan & Ng, 2005; Storkey, 2009; Zhang et al., 2013; Lipton et al., 2018).
Schölkopf et al. (2012) provides a unifying view of these shifts, showing how assumed invariances
in conditional probabilities correspond to causal assumptions about the inputs and outputs.

2 SHIFT DETECTION TECHNIQUES

Given labeled data (x1, y1), ..., (xN , yN ) ∼ p and unlabeled data x′1, ...,x
′
M ∼ q, our task is to

determine whether p(x) equals q(x′). Formally, H0 : p(x) = q(x′) vs H1 : p(x) 6= q(x′).
Chiefly, we explore the following design considerations: (i) what representation to run the test on;
(ii) which two-sample test to run; (iii) when the representation is multidimensional; whether to
run multivariate or multiple univariate two-sample tests; and (iv) how to combine their results.
Additionally, we share some preliminary work on qualitatively characterizing the shift, e.g. by
presenting exemplars, or identifying salient features.

2.1 DIMENSIONALITY REDUCTION

Building on recent results in Lipton et al. (2018); Ramdas et al. (2015) suggesting the benefits of
low-dimensional two-sample testing, we consider the following representations: (i) No Reduction
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(NoRed): To justify any dimensionality reduction techniques, we include tests on the original raw
features; (ii) SRP: sparse random projections (Achlioptas, 2003; Li et al., 2006); (iii) PCA: principal
components analysis; (vi) TAE: We extract representations by running an autoencoder trained on
source data; (v) UAE: the same approach but with an untrained autoencoder; (vi) BBSD: Here, we
adopt the approach of Lipton et al. (2018), using the outputs of a label classifier trained on source
data. Two variations of this approach are to use the hard-thresholded predictions (BBSDh) of the
label classifier enabling a chi-squared test of independence, or to use the softmax outputs (BBSDs),
requiring a subsequent multivariate test; and (vii) Classifier (Classif ): We partition both the source
data and target data into two halves, training a domain classifier to distinguish source from target
(trained with balanced classes). We then apply this model to the remaining data, performing a
subsequent binomial test on the hard-thresholded predictions.

2.2 TWO-SAMPLE TESTING

The dimensionality reduction techniques each yield a representation, either uni- or multidimen-
sional, either continuous or discrete. Among categorical output, we may have binary outputs (as
from the domain classifier) or multiple categories (the results from the hard label classifier). The
next step is to choose a suitable two sample test. In all experiments, we adopt a high-significance
level of α = 0.05 for hypothesis rejection. For representation methods that yield multidimensional
outputs, we have two choices: to perform a multivariate two-sample test, such as kernel two-sample
tests due to Gretton et al. (2012) or to perform uni-variate tests separately on each component. In the
latter case, we must subsequently combine the p-values from each test, encountering the problem of
multiple hypothesis testing. Unable to make strong assumptions about the dependence among the
tests, we must rely on a conservative aggregation method, such as the Bonferroni correction (Bland
& Altman, 1995). While a number of less conservative aggregations methods have been proposed
(Simes, 1986; Zaykin et al., 2002; Loughin, 2004; Heard & Rubin-Delanchy, 2018; Vovk & Wang,
2018), we found that even using the Bonferroni method, dimensionality reduction plus aggregation,
generally outperformed kernel two-sample testing on those same representations.

When performing univariate tests on continuous variables, we adopt the Kolmogorov-Smirnov (KS)
test, a non-parametric test whose statistic is calculated by taking the supremum over all values z of
the differences of the cumulative density functions (CDFs) as follows: D = supz |Fs(z) − Ft(z)|
where Fs and Ft are the empirical CDFs of the source and target data, respectively. When aggregat-
ing K univariate tests together, we apply the Bonferroni correction rejecting the null hypothesis if
the minimum p-value among all tests is less than α/K.

For all methods yielding multidimensional representations (NoRed, PCA, SRP, UAE, TAE, and
BBSDs), we tried both the kernel two-sample tests and Bonferroni-corrected univariate KS tests,
finding to our surprise, that the aggregated KS tests provided superior shift detection in most cases
(see experiments). For BBSDh (using the hard-thresholded label classifier predictions) we employ a
chi-squared test on the class frequencies. For the domain-classifier, we simply compare its accuracy
on held-out data to random chance via a binomial test.

3 EXPERIMENTS

We briefly summarize our experimental setup. Our experiments address the MNIST and CIFAR-10
datasets. For autoencoder (UAE & TAE) experiments, we employ a convolutional architecture with
3 conv and 1 fully-connected layers. For the label classifier and domain classifier we use a ResNet-
18 (He et al., 2016). We train all networks (TAE, BBSDs, BBSDh, Classif) with stochastic gradient
descent (SGD) with momentum and a batch size of 128, (decaying the learning rate with 1/

√
t)

over 200 epochs with early stopping. For PCA, SRP, UAE, and TAE, we reduce dimensionality to
K = 32 latent dimensions, which explains roughly 80% of PCA variance in both datasets used. The
label classifier BBSDs reduces dimensionality to the number of classes C. In these experiments,
we simulate a number of varieties of shift, affecting both the covariates and the label proportions.
For all shifts, we evaluate the various methods’ abilities to detect shift (including no-shift cases to
check against false positives). We evaluate the models with various amounts of samples from the
target dataset s ∈ {10, 20, 50, 100, 200, 500, 1000, 10000}. Because of the unfavorable dependence
of kernel methods on the dataset size we run these methods only up until 1000 target samples.
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Table 1: Dimensionality reduction methods (a) and shift-type (b) comparison. Underlined entries
indicate accuracy values larger than 0.5.

(a) Detection accuracy of different dimensionality
reduction techniques across all simulated shifts on
MNIST and CIFAR-10. Green bold entries indi-
cate the best DR method at a given sample size,
red italic the worst. BBSDs performs best for uni-
variate testing, while both UAE and TAE perform
best for multivariate testing.

Test DR
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

v.
te

st
s

NoRed 0.18 0.25 0.36 0.39 0.45 0.49 0.57 0.70
PCA 0.13 0.22 0.25 0.30 0.35 0.41 0.46 0.58
SRP 0.18 0.21 0.27 0.32 0.37 0.46 0.53 0.61
UAE 0.20 0.25 0.33 0.42 0.48 0.54 0.65 0.74
TAE 0.20 0.26 0.37 0.45 0.44 0.53 0.58 0.67

BBSDs 0.29 0.38 0.43 0.49 0.55 0.61 0.66 0.72

χ2 BBSDh 0.14 0.18 0.23 0.26 0.32 0.41 0.47 0.48
Bin Classif 0.04 0.09 0.10 0.10 0.28 0.38 0.47 0.66

M
ul

tiv
.t

es
ts

NoRed 0.00 0.00 0.00 0.04 0.15 0.15 0.18 –
PCA 0.01 0.05 0.09 0.11 0.15 0.22 0.28 –
SRP 0.00 0.00 0.03 0.08 0.13 0.14 0.19 –
UAE 0.19 0.26 0.36 0.36 0.42 0.49 0.59 –
TAE 0.19 0.22 0.36 0.44 0.46 0.50 0.58 –

BBSDs 0.16 0.19 0.23 0.31 0.30 0.43 0.48 –

(b) Detection accuracy of different shifts on
MNIST and CIFAR-10 using the best-performing
DR technique (univariate: BBSDs, multivariate:
average of UAE and TAE).

Test Shift
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

va
ri

at
e

te
st

s

s gn 0.00 0.03 0.07 0.10 0.10 0.10 0.10 0.10
m gn 0.00 0.03 0.10 0.10 0.14 0.24 0.24 0.38
l gn 0.45 0.52 0.59 0.72 0.83 0.86 0.97 1.00

s img 0.14 0.21 0.31 0.45 0.59 0.59 0.69 0.97
m img 0.34 0.55 0.66 0.79 0.83 0.90 0.93 1.00
l img 0.48 0.66 0.72 0.83 0.83 0.93 1.00 1.00
adv 0.07 0.10 0.10 0.10 0.17 0.21 0.34 0.45
ko 0.00 0.00 0.00 0.07 0.10 0.34 0.48 0.72

m img+ko 0.45 0.66 0.79 1.00 1.00 1.00 1.00 1.00
oz+m img 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M
ul

tiv
ar

ia
te

ke
rn

el
te

st
s s gn 0.02 0.02 0.05 0.05 0.08 0.10 0.12 –

m gn 0.03 0.08 0.17 0.19 0.29 0.32 0.39 –
l gn 0.51 0.53 0.71 0.75 0.81 0.88 0.97 –

s img 0.12 0.15 0.20 0.29 0.39 0.41 0.51 –
m img 0.29 0.31 0.36 0.39 0.44 0.54 0.66 –
l img 0.29 0.32 0.36 0.46 0.59 0.75 0.81 –
adv 0.03 0.08 0.20 0.22 0.22 0.25 0.32 –
ko 0.05 0.10 0.17 0.19 0.20 0.24 0.34 –

m img+ko 0.17 0.22 0.39 0.51 0.54 0.58 0.78 –
oz+m img 0.36 0.75 0.86 1.00 1.00 1.00 1.00 –

For each shift type (as appropriate) we explored three levels of shift intensity (indicated by s , m ,
l prefixes) and various percentages of affected data δ ∈ {0.1, 0.5, 1.0}. We explore the following
types of shift: Adversarial examples (adv): as introduced by Szegedy et al. (2013) and created via
the FGSM method (Goodfellow et al., 2014); Knock-out shift (ko): a form of label shift introduced
by Lipton et al. (2018), where a fraction δ of data points from class c = 0 are removed, creating
class imbalance; Gaussian shift (gn): covariates corrupted by noise with standard deviation σ ∈
{1, 10, 100}; Image shift (img): more natural shifts to images using random amounts of rotations
{10, 40, 90}, (x, y)-axis-translation percentages {0.05, 0.2, 0.4}, as well as zoom-in percentages
{0.1, 0.2, 0.4}. We also explored combinations of image shift with label shift (e.g. m img+ko).
Original splits: As a sanity check, we also evaluated our detectors on the original source/target
splits provided by in MNIST, CIFAR-10, Fashion MNIST, and SVHN datasets typically regarded
being i.i.d.; and Domain adaptation datasets: We tested our detection method on the domain
adaptation task from MNIST (source) to USPS (target) (Long et al., 2013) as well as on the COIL-
10 dataset (an alternation of the COIL-100 dataset which only includes the first 10 classes) (Nene
et al., 1996) where images between 0◦ and 175◦ are sampled by the source and images between
180◦ and 355◦ are sampled by the target distribution.

4 DISCUSSION

Aggregating results across the broad spectrum of explored shifts (Table 1a), we see that univariate
tests on BBSDs representations performs best. The domain-classifier approach struggles the most
to detect shift in the low-sample regime, but performs better with more sample data. One benefit
of the classifier-based approach is that it gives us an intuitive way to quantify the amount of shift
(the accuracy of the classifier), and also yields a mechanism for identifying exemplars most likely to
occur in either the source or target distributions. In Appendix A, we break out all results by shift type
and provide top different/similar samples. Detection results by shift type are summarized in Table
1b. We were surprised to find that across our dimensional-reduction methods, aggregated univariate
tests performed separately on each component of the latent vectors outperformed multivariate tests.
Overall, we observed that large shifts can on average already be detected with better than chance
accuracy at only 20 samples in the multiple univariate testing setting, while medium and small shifts
required orders of magnitude more samples in order to achieve similar accuracy.

Aside from our synthetically generated shifts applied to MNIST and CIFAR-10 (example shown in
Figure 2), we also ran our detection scheme on the COIL-10 dataset. The key results are reported
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(a) 10% perturbed data in test set.
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(b) 50% perturbed data in test set.
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(c) 100% perturbed data in test set.

(d) Top different samples. (e) Top similar samples.

Figure 2: Shift detection results for medium image shift on MNIST.
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(a) Randomly shuffled dataset containing images of
all angles in both training and test set.
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(b) Angle-partitioned dataset as described in Sec. 3.

(c) Top different samples. (d) Top similar samples.

Figure 3: Shift detection results on COIL-10.

in Figure 3. We can easily see in subfigures (a) and (b) that our testing procedure does not return
significant p-values in case the source and target distributions align, while the different dimension-
ality reduction techniques show varying speeds at detecting a shift when the two distributions do not
match. In alignment with our artificially generated shifts, BBSDs is again in the lead, consistently
being able to already detect a shift at only 10 samples from the target distribution. Furthermore, the
samples provided by the difference classifier (see subfigures (c) and (d)) clearly show images from
the first half of the rotation spectrum (0◦− 175◦) being mostly similar to the source distribution and
images from the second half of the rotation spectrum (180◦ − 355◦) being mostly different.

One surprising finding discovered early in this study was that the original MNIST train/test split
appears not to be i.i.d., detected by nearly all methods. As a sanity check we reran the test on a
random split, not detecting a shift. Closer inspection revealed significant differences in the means
of 6’s. Corroborating this finding, the difference classifier singled out test set 6’s most confidently.

We see several promising paths for future work, the most crucial ones being: (i) We must extend
our work to account intelligently for repeated-two sample tests over time as data streams in; and
exploiting the high degree of correlation between adjacent time steps; (ii) Our detection scheme
needs to be tested in more machine learning domains; and (ii) In reality all datasets shift, so the
bigger challenge is to quantify/characterize the shift, and to decide when practitioners should be
alarmed and what actions they should take.
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A DETAILED SHIFT DETECTION RESULTS

Our complete shift detection results in which we evaluate different kinds of target shifts on MNIST
and CIFAR-10 using the proposed methods are documented below. In addition to our artificially
generated shifts, we also evaluated our testing procedure on the original splits provided by MNIST,
Fashion MNIST, CIFAR-10, and SVHN.

A.1 ARTIFICIALLY GENERATED SHIFTS

A.1.1 MNIST
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.

(d) Top different samples. (e) Top similar samples.

Figure 4: MNIST adversarial shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.

Figure 5: MNIST adversarial shift, multivariate two-sample tests.
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(c) Knock out 100% of class 0.

(d) Top different samples. (e) Top similar samples.

Figure 6: MNIST knock-out shift, univariate two-sample tests + Bonferroni aggregration.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

Figure 7: MNIST knock-out shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 8: MNIST large Gaussian noise shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

NoRed
PCA
SRP
UAE
TAE
BBSDs

(c) 100% perturbed samples.

Figure 9: MNIST large Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 10: MNIST medium Gaussian noise shift, univariate two-sample tests + Bonferroni aggre-
gration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 11: MNIST medium Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 12: MNIST small Gaussian noise shift, univariate two-sample tests + Bonferroni aggregra-
tion.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 13: MNIST small Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 14: MNIST large image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 15: MNIST large image shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 16: MNIST medium image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 17: MNIST medium image shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 18: MNIST small image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 19: MNIST small image shift, multivariate two-sample tests.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

(d) Top different samples. (e) Top similar samples.

Figure 20: MNIST medium image shift (50%, fixed) plus knock-out shift (variable), univariate two-
sample tests + Bonferroni aggregration.
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(a) Knock out 10% of class 0.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

Figure 21: MNIST medium image shift (50%, fixed) plus knock-out shift (variable), multivariate
two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 22: MNIST only-zero shift (fixed) plus medium image shift (variable), univariate two-sample
tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 23: MNIST only-zero shift (fixed) plus medium image shift (variable), multivariate two-
sample tests.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

(c) Top different samples. (d) Top similar samples.

Figure 24: MNIST to USPS domain adaptation, univariate two-sample tests + Bonferroni aggregra-
tion.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

Figure 25: MNIST to USPS domain adaptation, multivariate two-sample tests.

A.1.2 CIFAR-10
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.

No samples available as Classif did not detect a shift.

(d) Top different samples.

No samples available as Classif did not detect a shift.

(e) Top similar samples.

Figure 26: CIFAR-10 adversarial shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.

Figure 27: CIFAR-10 adversarial shift, multivariate two-sample tests.

15



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

101 102 103 104

Number of samples from test

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) Knock out 10% of class 0.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

No samples available as Classif did not detect a shift.

(d) Top different samples.

No samples available as Classif did not detect a shift.

(e) Top similar samples.

Figure 28: CIFAR-10 knock-out shift, univariate two-sample tests + Bonferroni aggregration.
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(a) Knock out 10% of class 0.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

Figure 29: CIFAR-10 knock-out shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 30: CIFAR-10 large Gaussian noise shift, univariate two-sample tests + Bonferroni aggre-
gration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 31: CIFAR-10 large Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

No samples available as Classif did not detect a shift.

(d) Top different samples.

No samples available as Classif did not detect a shift.

(e) Top similar samples.

Figure 32: CIFAR-10 medium Gaussian noise shift, univariate two-sample tests + Bonferroni ag-
gregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 33: CIFAR-10 medium Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

No samples available as Classif did not detect a shift.

(d) Top different samples.

No samples available as Classif did not detect a shift.

(e) Top similar samples.

Figure 34: CIFAR-10 small Gaussian noise shift, univariate two-sample tests + Bonferroni aggre-
gration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 35: CIFAR-10 small Gaussian noise shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 36: CIFAR-10 large image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 37: CIFAR-10 large image shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 38: CIFAR-10 medium image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 39: CIFAR-10 medium image shift, multivariate two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 40: CIFAR-10 small image shift, univariate two-sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 41: CIFAR-10 small image shift, multivariate two-sample tests.
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(a) Knock out 10% of class 0.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

(d) Top different samples. (e) Top similar samples.

Figure 42: CIFAR-10 medium image shift (50%, fixed) plus knock-out shift (variable), univariate
two-sample tests + Bonferroni aggregration.
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(a) Knock out 10% of class 0.
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(b) Knock out 50% of class 0.
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(c) Knock out 100% of class 0.

Figure 43: CIFAR-10 medium image shift (50%, fixed) plus knock-out shift (variable), multivariate
two-sample tests.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

(d) Top different samples. (e) Top similar samples.

Figure 44: CIFAR-10 only-zero shift (fixed) plus medium image shift (variable), univariate two-
sample tests + Bonferroni aggregration.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Figure 45: CIFAR-10 only-zero shift (fixed) plus medium image shift (variable), multivariate two-
sample tests.
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A.2 ORIGINAL SPLITS

A.2.1 MNIST
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

(c) Top different samples. (d) Top similar samples.

Figure 46: MNIST randomized and original split, univariate two-sample tests + Bonferroni aggre-
gration.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

Figure 47: MNIST randomized and original split, multivariate two-sample tests.

A.2.2 FASHION MNIST
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

NoRed
PCA
SRP
UAE
TAE
BBSDs
BBSDh
Classif

(b) Original split.

No samples available as Classif did not detect a shift.

(c) Top different samples.

No samples available as Classif did not detect a shift.

(d) Top similar samples.

Figure 48: Fashion MNIST randomized and original split, univariate two-sample tests + Bonferroni
aggregration.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

Figure 49: Fashion MNIST randomized and original split, multivariate two-sample tests.

A.2.3 CIFAR-10
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

No samples available as Classif did not detect a shift.

(c) Top different samples.

No samples available as Classif did not detect a shift.

(d) Top similar samples.

Figure 50: CIFAR-10 randomized and original split, univariate two-sample tests + Bonferroni ag-
gregration.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

Figure 51: CIFAR-10 randomized and original split, multivariate two-sample tests.
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A.2.4 SVHN
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

(c) Top different samples. (d) Top similar samples.

Figure 52: SVHN randomized and original split, univariate two-sample tests + Bonferroni aggre-
gration.
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(a) Randomly shuffled dataset with
same split proportions as original
dataset.
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(b) Original split.

Figure 53: SVHN randomized and original split, multivariate two-sample tests.
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