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ABSTRACT

Many vision and language models suffer from poor visual grounding – often
falling back on easy-to-learn language priors rather than associating language
with visual concepts. In this work, we propose a generic framework which we
call Human Importance-aware Network Tuning (HINT) that effectively leverages
human supervision to improve visual grounding. HINT constrains deep networks
to be sensitive to the same input regions as humans. Crucially, our approach op-
timizes the alignment between human attention maps and gradient-based network
importances, ensuring that models learn not just to look at but rather rely on vi-
sual concepts that humans found relevant for a task when making predictions. We
demonstrate our approach on Visual Question Answering and Image Captioning
tasks, achieving state-of-the-art for the VQA-CP dataset which penalizes over-
reliance on language priors.

1 INTRODUCTION

Many popular and well-performing models for multi-modal, vision-and-language tasks exhibit poor
visual grounding – failing to appropriately associate words or phrases with the image regions they
denote and relying instead on superficial linguistic correlations (2; 1; 6; 7). For example, answering
the question “What color are the bananas?” with yellow regardless of their ripeness evident in the
image. When challenged with datasets that penalize reliance on these sort of biases (2; 6), state-of-
the-art models demonstrate significant drops in performance despite there being no change to the set
of visual and linguistic concepts about which models must reason.
In addition to these diagnostic datasets, another powerful class of tools for observing this shortcom-
ing has been gradient-based explanation techniques (12; 16; 11) which allow researchers to examine
which portions of the input models rely on when making decisions. Applying these techniques has
shown that vision-and-language models often focus on seemingly irrelevant or contextual image
regions that differ significantly from where human subjects fixate for the same tasks.
While somewhat dissatisfying, these findings are not wholly surprising – after all, standard practices
do not provide any guidance for visual grounding. Instead, models are trained on input-output pairs
and must resolve grounding from co-occurrences – a challenging task, especially in the presence of
more direct and easier to learn correlations in language. To combat this tendency, we explore how
to provide grounding supervision directly.
Towards this end, we introduce a generic, second-order approach that updates model parameters
to better align gradient-based explanations with human attention maps. Our approach which we
call Human Importance-aware Network Tuning (HINT) enforces a ranking loss between human
annotations of input importance and gradient-based explanations produced by a deep network –
updating model parameters via a gradient-of-gradient step. Importantly, this constrains models to
not only look at the correct regions but to also be sensitive to the content present when making
predictions. This forces models to base their decisions on the same regions as humans, providing
explicit grounding supervision. While we explore applying HINT to vision-and-language problems,
this approach is general and can be applied to focus model decisions on specific inputs in any context.

Contributions. To summarize our contributions, we
• introduce Human Importance-aware Network Tuning (HINT), a general approach for constrain-

ing the sensitivity of deep networks to specific input regions and demonstrate it results in signifi-
cantly improved visual grounding for two vision and language tasks, and
• set a new state-of-the-art on the bias-sensitive VQA Under Changing Priors (VQA-CP) dataset.
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Figure 1: Our Human Importance-aware Network Tuning (HINT) approach: Given an image and a question like “Did he hit the ball?”, we
pass them through the Bottom-up Top-down architecture shown in the left half. For the example shown, the model incorrectly answers ‘no’.
For the ground-truth answer ‘yes’, we determine the proposals important for the decision through Grad-CAM. We rank the proposals through
human attention and provide a ranking loss in order to align the network’s importance with human importance. Tuning the model through
HINT makes the model not only answer correctly, but also look at the right regions.

2 RELATED WORK

Model Interpretability. There has been significant recent interest in building machine learning
models that are transparent and interpretable in their decision making process. For deep networks,
several works propose explanations based on internal states or structures of the network (15; 11).
Most related to our work is the approach of Selvaraju (11) which computes neuron importance as
part of a visual explanation pipeline. In this work, we enforce that these importance scores match
importances provided by domain experts.
Human Attention for VQA. Das (5) collected human attention maps for a subset of the VQA
dataset (4). Given a question and a blurry image, humans were asked to interactively deblur regions
in the image until they could confidently answer. In this work we utilize these maps, enforcing the
gradient-based visual explanations of model decisions to match the human attention closely.

3 HUMAN IMPORTANCE-AWARE NETWORK TUNING
The premise of our work is as follows– humans tend to rely on some portion of the input more than
others when making decisions. Our approach ensures that those portions of input are relevant for
the model as well. HINT computes the important concepts through gradient-based explanations and
tunes the network parameters so as to align with the concepts deemed important by humans. We use
the generic term ‘decision’ to refer to both the answer in the case of VQA and the words generated
at each time step in the case of image captioning. While our approach is generic and can be applied
to any architecture, below we describe HINT in context of the Bottom-up Top-down model for VQA
and captioning. The Bottom-up Top-down model architecture can be seen in the left half of 1 is a
variant of the traditional attention mechanism, where the attention is at the level of objects and other
salient image regions giving significant improvements in VQA and captioning performance.

3.1 HUMAN IMPORTANCE

In this step we align the expert knowledge obtained from humans into a form corresponding to the
network inputs. The Bottom-up Top-down model (3) takes in as input, region proposals. For a given
image and question (in case of VQA) we compute an importance score for each of the proposals for
the correct decision based on the normalized human attention map energy inside the proposal box
relative to the normalized energy outside the box.
More concretely, consider an importance map Ad ∈ Rh×w that indicates the spatial regions of
support for a decision d with higher values in Ad. Given a proposal region r with area ar, we can
write the normalized importance inside and outside r for decision d as

Ed
+(r)=

1

ar

∑
(i,j)∈r

Ad
ij and Ed

−(r)=
1

hw−ar

∑
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ij

respectively. We compute the overall importance score for k for decision d as: sdk =
Ed

+(k)

Ed
+(k)+Ed

−(k)

Human attention for VQA and captioning. For VQA, we use the human attention maps collected
by Das (5) for a subset of the VQA (4) dataset. While human attention maps do not exist for image
captioning, COCO dataset (8) has segmentation annotations for 80 everyday occurring categories.
We use an object category to word mapping that maps object categories like <person> to a list of
potential fine-grained labels like [“child”, “man”, “woman”, ...] similar to (9). We map a total of
830 visual words existing in COCO captions to 80 COCO categories. We then use the segmentation
annotations for the 80 categories as human attention for this subset of matching words.
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Model VQA-CP test VQAv2 val
Overall Yes/No Number Other Overall Yes/No Number Other

SAN (14) 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
UpDn (3) 39.49 45.21 11.96 42.98 62.85 80.89 42.78 54.44

GVQA (2)† 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65

UpDn + Attn. Align 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22
UpDn + AdvReg (10)† 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
UpDn + HINT (ours) 47.78 70.04 10.68 46.31 63.38 81.18 42.99 55.56

Table 1: Results on compositional (VQA-CP) and standard split (VQAv2). We see that our approach (HINT) gets a significant boost of over
8% from the base UpDn model on VQA-CP and minor gains on VQAv2. The Attn. Align baseline sees similar gains on VQAv2, but fails to
improve grounding on VQA-CP. † results taken from corresponding papers.

3.2 NETWORK IMPORTANCE

We define Network Importance as the importance (weight) that the given trained network places
on spatial regions of the input when forced to make a decision. Selvaraju (11) proposed an ap-
proach to compute the importance of last convolutional layer’s neurons. In their work, they compute
the importance of last convolutional layer neurons as they serve as the best compromise between
high level semantics and detailed spatial information. Since proposals usually look at objects and
salient/semantic regions of interest while providing a good spatial resolution, we naturally extend
(11) to compute importance over proposals. Given a proposal r, its embedding P r, its importance
for predicting the ground-truth decision dgt, can be computed as,

αr
dgt

=

global pooling︷︸︸︷
|P |∑
i=1

∂odgt

∂P r
i︸ ︷︷ ︸

gradients via backprop

(1)

where odgt
is a one-hot encoding containing the score for the ground-truth decision (answer in VQA

and the visual word in case of captioning). Note that we compute the importance for the ground-
truth decision, and not the predicted. Human attention for incorrect decisions are not available and
are intuitively non-existent, as there exists no evidence for incorrect predictions in the image.

3.3 HUMAN-NETWORK IMPORTANCE ALIGNMENT

At this stage, we now have two sets of importance scores – one from the human attention and another
from network importance – that we would like to align. We focus on the relative rankings of the
proposals, applying a ranking loss – specifically, a variant of Weighted Approximate Rank Pairwise
(WARP) loss. At a high level, our ranking loss searches all possible pairs of proposals and finds
those pairs where the pair-wise ranking based on network importance disagrees with the ranking
from human importance. Let S denote the set of all such misranked pairs. For each pair in S, the
loss is updated with the absolute difference between the network importance score for the proposals
pair. In order to stabilize training we observe that it is necessary to have the task loss – cross entropy
loss in case of VQA and negative log-likelihood for image captioning. So the HINT loss becomes,

LHINT =
∑

(r′,r)∈S

∣∣∣αr′

− − αr
+

∣∣∣+ LTask (2)

The first term encourages the network to base decisions on the correct regions and the second term
encourages it to actually make the right decision.

4 EXPERIMENTS AND ANALYSIS

4.1 HINT FOR VQA
Table 1 shows results on VQA-CP and VQAv2 for HINT and prior work. We summarize key results:
HINT reduces language-bias. For VQA-CP, our HINTed UpDown model significantly improves
over its base architecture alone by 8 percentage point gain in overall accuracy. Further, it outper-
forms existing approaches based on the same UpDn architecture (41.17 for AdvReg vs 47.78 for
HINT), setting a new state-of-the-art for this problem. We do note that our approach uses additional
supervision in the form of human attention maps for 6% of training images.
HINT improves grounding without reducing standard VQA performance. Unlike previous
approaches for language-bias reduction which cite trade-offs in performance between the VQA and
VQA-CP splits (10; 2), we find our HINTed UpDn model improves on standard VQA – making
HINT the first ever approach to show simultaneous improvement on both splits.
Attn. Align is ineffective compared to HINT. A surprising (to us at least) finding and motivating
observation of this work is that directly supervising model attention (as in Attn. Align) is ineffective
at reducing language-bias and improving visual grounding as measured by VQA-CP.
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(a) (b)
Figure 2: Qualitative comparison of models before and after applying HINT. The left column shows the input image along with the question
and the ground-truth (GT) answer from the VQA-CP val split. In the middle column, for the base model we show the explanation visualization
for the GT answer along with the model’s answer. Similarly we show the explanations and predicted answer for the HINTed models in the
third column. We see that the HINTed model looks at more appropriate regions and answers better.

4.2 HINT FOR IMAGE CAPTIONING

Our implementation of the Bottom-up Top-down captioning model achieves a CIDEr (13) score of
1.06 on the standard split and 0.90 on the robust split. Upon applying HINT to the base model
trained on the robust split, we obtain a CIDEr score of 0.92, an improvement of 0.02 over the base
model. For the model trained on the standard split, performance drops by 0.02 in CIDEr score (1.04
compared to 1.06). As we show in the following sections, the lack of improvement in score does not
imply a lack of change – we find the model shows significant improvements at grounding (Fig. 3).

(a) (b)
Figure 3: Qualitative comparison of captioning models before and after applying HINT. The left column shows the input image along with
the ground-truth caption from the COCO robust split. In the middle column, for the base model we show the explanation visualization for
the visual word mentioned below. Explanations for the HINTed models are in the third column. We see that the HINTed model looks at
more appropriate regions. For example in (a) note how the HINTed model correctly localizes the fork, apple and the orange accurately when
generating the corresponding visual words, but the base model fails to do so.

5 CONCLUSION
We presented Human Importance-aware Network Tuning (HINT), a general framework for aligning
network sensitivity to spatial input regions that humans deemed as being relevant to a task. We
demonstrated this method’s effectiveness at improving visual grounding in vision and language tasks
such as Visual Question Answering and Image Captioning. We also show that better grounding
not only improves the generalization capability of models to arbitrary test distributions, but also
improves the trust-worthiness of model.
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