
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

MAST: A TOOL FOR VISUALIZING CNN MODEL AR-
CHITECTURE SEARCHES

Dylan Cashman
⇤

Tufts University
Medford, MA 02155
dylan.cashman@tufts.edu

Adam Perer

Carnegie Mellon University
Pittsburgh, PA 15213
adam.perer@cmu.edu

Hendrik Strobelt

MIT-IBM Watson AI Lab
Cambridge, MA 02139
hendrik@strobelt.com

ABSTRACT

Any automated search over a model space uses a large amount of resources to ulti-
mately discover a small set of performant models. It also produces large amounts
of data, including the training curves and model information for thousands of
models. This expensive process may be wasteful if the automated search fails to
find better models over time, or if promising models are prematurely disposed of
during the search. In this work, we describe a visual analytics tool used to ex-
plore the rich data that is generated during a search for feed forward convolutional
neural network model architectures. A visual overview of the training process
lets the user verify assumptions about the architecture search, such as an expected
improvement in sampled model performance over time. Users can select subsets
of architectures from the model overview and compare their architectures visually
to identify patterns in layer subsequences that may be causing poor performance.
Lastly, by viewing loss and training curves, and by comparing the number of pa-
rameters of subselected architectures, users can interactively select a model with
more control than provided by an automated metalearning algorithm. We present
screenshots of our tool on three different metalearning algorithms on CIFAR-10,
and outline future directions for applying visual analytics to architecture search.

1 INTRODUCTION

In less than a decade, artificial neural networks (ANNs) have become the preeminent topic in ar-
tificial intelligence and data processing, due to their superior performance in machine intelligence
competitions. The increased interest in ANNs in the AI community has coincided with the big data
movement, in which the capacity to gather, analyze, and process data has pervaded wide sectors
of government, industry, and academia. The end result is that neural networks are used by a much
wider audience than ever before. Yet even for data scientists with experience in using machine learn-
ing models, choosing an architecture and its corresponding hyperparameters can be a difficult, even
mystifying task. While ANNs alleviate the need to find an efficient data encoding, they generally
require a handcrafted setting of the number and types of layers, the learning rate procedure, and the
parameter optimizer, among other hyperparameters.

Recent developments in metalearning have produced model architecture search (MAS) algorithms
that are able to select architectures by various methods including Bayesian Optimization (Snoek
et al., 2012) and Q-Learning (Baker et al., 2017). This optimization process is very resource inten-
sive and may not terminate for an unreasonably long time; it is seen as a surprising accomplishment
if a competitive, untrained architecture is found within 24 hours (Wistuba, 2017). The outcome of
this metalearning is typically a set of well-performing models. Many things can go wrong, however.

⇤Work done while an intern at the MIT-IBM Watson AI Lab

1



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

If an architecture search is not given enough resources, it may only train each model one or two
epochs, and not be provided enough time to make accurate predictions about what will be the most
promising candidate models. It may also be the case that the archictecture search itself is poorly
parameterized - a reinforcement learning search with poor choices for balancing exploration verse
exploitation might never improve its sampling strategy. If the MAS results in a poor model, it may
be hard to know whether it was a result of the data being a poor fit for this type of model, or whether
it was due to an issue with the parameterization of the MAS.

In this work, we posit that attribution can be facilitated visual inspection of the data generated by
the MAS. In order to produce the top k architectures, a MAS might produce thousands of candidate
architectures, apportioning tens of thousands of epochs of training among them. The full set of
inferences, accuracies, losses, and metadata associated with each model could provide insight into
how the MAS algorithm evolves its model sampling over time. It also contains information on which
layer subsequences correlate with endemically poor performance on the dataset, providing hints on
how to improve the architectures discovered by the automated search. And lastly, it can enable
the analyst to choose a model they find promising that may not have been explicitly recommended
by the search, i.e. if they wanted a model with the highest accuracy under a certain limitation of
parameter size for deployment on an edge device.

In this work, we present a tool for visualizing data generated during MAS, designed for data sci-
entists that don’t have the ability to manually craft their own architecture and so use an automated
search. In addition to rendering the process more transparent, our tool helps the analyst verify as-
sumptions about the architecture search using a visual overview. By selecting subsets of discovered
models, they can gain an understanding of the effects of different layer subsequences that might then
be used to subsequently improve models returned by the MAS. By viewing loss and training curves
and comparing the size of models in number of parameters, they are also able to have finer-grained
selection from the set of models discovered by the MAS. We demonstrate our tool with screenshots
from three MAS algorithms on CIFAR-10 data: a Markov chain with fixed training epochs, the same
chain with a bandit-based approach to training, and a reinforcement learning based algorithm. We
describe how basic properties of these metalearning algorithms can be verified from the visualiza-
tions in our tool, and describe the steps a user might take to better understand layer subsequences
and interactively select models. We conclude by discussing some future functionality and planned
user evaluations.

2 MODEL ARCHITECTURE SEARCH DATA

In a typical model architecture search, a model space M is periodically sampled by a strategy ⇡. For
feed forward convolutional neural networks, the focus of this work, the model space is typically the
set of all possible sequences of layers (e.g. convolutional layers, fully connected layers, etc.) along
with their hyperparameters. The sampling strategy ⇡ is typically stochastic: a baseline strategy
might uniformly sample from the model space. For each sampled model mi, an MAS will produce
a set of results on training epochs, {eij}, where each training epoch result might represent a single
scalar value, such as the training accuracy or loss on that epoch, or it might include all inferences on
all data in the epoch. When the MAS terminates, it outputs its best guess (or top k best guesses) at the
optimal discovered model, m⇤. MAS algorithms must trade off between sampling many models and
training them for a short number of epochs verse sampling few models but training them sufficiently.
Thus, the ranking of models that produces m⇤ is only an estimate. In addition, the sampling strategy
⇡ largely determines which parts of the model space are explored, and a poor strategy might result in
many poor models being trained and thus wasting resources. We posit that by viewing the training
data of discovered architectures, a user can gain a better understanding of how the MAS might be
reparameterized or overruled.

We enumerate three goals that may be served by visualizing the model space in a MAS over feed
forward CNNs.

• G1: Verifying MAS Algorithms. It is important to analysts to verify and validate assump-
tions about the MAS algorithm in order to trust that it discovered a large enough variety
of models to have produced a good model. The analyst might want to confirm that the
sampled models are improving over time, or that the MAS is apportioning enough training
to get a realistic estimate of the performance of its sampled models.

2



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Figure 1: A screenshot of MAST using data gathered during a MetaQNN run over CIFAR-10
data. MAST features a model drawer showing architectures along with various training data (A),
a zoomable MAS overview (B), and a set of controls that modify the visualizations (C). MAST
visualizes data generated during a Model Architecture Search in order to imbue trust in the model
architecture search, and enables an analyst to use their domain knowledge in selecting an architec-
ture.

• G2: Attributing Layer Patterns. By selecting and comparing groups of models, the user
can attribute layer patterns to performance or model size. This information can then be
used to determine if the sampling strategy is sampling the right types of models. Inspecting
two different layer sequences with small differences, such as two similar architectures with
and without a dropout layer, can lead to a better understanding of individual layer patterns,
and can help the user fine tune a model.

• G3: Improving Model Selection. There are several reasons why an MAS algorithm might
actually produce a m⇤ that is a poor fit for the analyst’s task. First, if the MAS is not
provided enough resources, it may not have trained its models a sufficient number of epochs
to have much confidence that its m⇤ is actually a superior model. Second, the analyst may
have additional knowledge that they were unable to encode into the objective function of
the MAS. For example, they may have a restriction where they cannot accept models over
a certain memory size because they must be deployed on edge devices.

While any one of these goals could be formally defined and explored computationally on a dataset,
the goal of this work is to make a tool to provide a starting point to engage with these questions.
Visualization excels at abstracting away complexity, providing canvas for high-level insights while
still allowing for drilled-down details on demandVan Wijk (2005). Humans excel at finding visual
patterns, suggesting that G2 could be addressed via a juxtaposition of visual encodings of model
architectures. Humans also excel at seeing temporal trends (G1), and within those trends, outliers
(G3). There are several examples of visual analytics systems empowering users to discover faults in
neural models that suggest this is a promising avenue of research (Strobelt et al., 2019; Simonyan
et al., 2013).

3 MAST: A MODEL ARCHITECTURE SEARCH TOOL

MAST, seen in Figure 1, is a tool for exploring the data generated during a model architecture
search. It has three components. Figure 1A shows the model drawer, a table in which each column
represents a single model discovered during the search. The columns hold various information about
the model’s training, including the number of epochs trained, the best validation accuracy attained,
and the number of parameters of the model. Models can be sorted by any attribute, and even certain

3



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Figure 2: The MAS overview on data generated by the Hyperband MAS, which starts by training
many models for a short number of epochs, then recursively continues to train the best subset at each
iteration. The configuration options, seen in Figure 1C, let the user select which overview is given.
Subfigure A shows the loss curves, demonstrating that some trained models don’t improve at all,
and also illustrating how Hyperband intersperses training of different models. Subfigure B removes
the individual training curves, and shows orange lines representing rolling averages of the variance
(vertical line) and performance (horizontal line) of each newly sampled model. The horizontal axis
is wall time and the vertical axis is validation accuracy. Subfigure C shows the third possible view,
where the performance curves of all models are aligned based on number of epochs rather than wall
time.

compositions of attributes, such as the validation accuracy divided by the log of the number of
parameters. Such composite attributes can help the analyst see models according to metrics not
considered by the MAS.

Each model is represented by a space-efficient visual encoding called a Sequential Neural Archi-
tecture Chip (SNAC). SNACs are used to provide a visual shorthand of the structure of the model.
They encode the sequence of layers, and can thus enable an analyst to see patterns in subsequences
or when certain subsequences occur (beginning, middle, or end). They also encode the dimension-
ality of the activations flowing through the model - width corresponds to a log scale of the total
tensor size at that layer. In this way, analysts can get a sense of whether the model is projecting
to a higher dimension, or simply reducing the dimensionality. More information about the design
decisions involved in developing SNACs can be found in the appendix.

Underneath the model drawer is the MAS overview. Figure 1B shows one of the possible visualiza-
tions for the overview. It shows two indications of performance of the MAS run. The vertical axis
measures validation accuracy, and the horizontal axis measures wall time. The green line shows the
best validation accuracy attained to that point, so that it is monotonically increasing. The green line
represents what might be outputted by a MAS were it to cut off at a given wall time. The horizontal
and vertical orange lines correspond to rolling mean and variance of the k most recently discovered
models. This can illustrate what the MAS algorithm is doing. In Figure 1, the MAS is MetaQNN, a
reinforcement learning algorithm typified by an initial exploration stage (with poor average perfor-
mance and large variance), followed by an exploitation stage (with better performance and decreased
variance)(Baker et al., 2017).

In contrast, figure 2 shows the Hyperband MAS, which apportions its training resources much less
equally, samples models less regularly, and thus has its orange lines spaced out more. Figure 2 also
shows individual model training curves, one of the configuration options in MAST, controlled in the
side panel in Figure 1C. By viewing individual training curves, the analyst can determine if a given
model was trained sufficiently, or should have been given more training epochs. Analysts can also
view performance per epoch in order to compare training curve shapes directly. All views can be
used to select subsets of models to compare in more detail in the model drawer.

4



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Figure 3: The MAS overview on data generated by a Markov chain with each model trained for a
fixed number of epochs. Subfigures A, B, and C are three different overviews available to the user;
see Figure 2 for a description.

3.1 WORKFLOW

A user of MAST would typically start by viewing the MAS overview, Figure 1B, to validate as-
sumptions about the MAS (G1). For example, a user might look for the exploration / exploitation
pattern, expected in Q-learning strategies, when running the MetaQNN algorithm. If the Hyperband
metalearning algorithm was used (Figure 2), the user may want to confirm that it was parameterized
correctly so that it allocated enough training epochs to determine which were the most promising
architectures. Viewing the training curves by epoch, in Figure 2C, the user may note that many of
the models were still improving when their training was cut off, and the MAS should be rerun with
more resources, or that they should take a large number of the candidate models and train them for
longer before choosing an architecture.

The user may note that the MAS performed as expected, but want to check if their sampling strategy
⇡ resulted in reasonable models being trained. In figures 3A and 3C, it is evident that the MAS spent
a lot of time training poor models. The user can select a set of good models and bad models from
those views, and then compare their architectures in the model drawer (G2). They may see that
certain layer transitions result in poor performing models, and they can then reparameterize their
sampling strategy ⇡ and rerun their MAS.

Lastly, the user may use MAST to assist in selecting a model. They can view individual loss curves
to determine if one model might appear to benefit more from more training. Then, they can select
the set of models they are most interested in, and view them in the model drawer, comparing their
parameters and time for inference (forward time) and time for training (background time).

4 DISCUSSION

There are many directions for future research. The visual encodings used in MAST are restricted
to feed forward CNNs, but more complex neural networks are increasingly being used for domain
problems. New visual encodings need to be found that can still be easily compared like SNACs.
There could be more support for experimentation as well.

Metalearning is an enticing potential solution to the very real problem of enabling nonexpert analysts
to use complex learning algorithms like CNNs. However, it can require an obscene amount of
resources, and it may be irresponsible to solve every problem with a metalearning solution. Each
metalearning run uncovers a rich set of data. Efficient metalearning algorithms make use of this
data possibly by updating their sampling strategies or adapting discovered models. But that data
can be useful also in instructing the nonexpert in the task of manually constructing a model, so that
metalearning might not be needed the next time. It may also be helpful in providing a sanity check
that the automated process produced the desired output. Whenever rich data is generated, it can only
help to provide visualizations to help interpret that data.

5



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

ACKNOWLEDGMENTS

This work was partially supported by DARPA grant FA8750-17-2-0107 and the IBM Research Cam-
bridge internship program.

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. International Conference on Learning Representations,
2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.

Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. Seq2seq-vis: A visual debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer graphics, 25(1):353–363, 2019.

Jarke J Van Wijk. The value of visualization. In VIS 05. IEEE Visualization, 2005., pp. 79–86. IEEE,
2005.

Martin Wistuba. Finding competitive network architectures within a day using UCT. arXiv preprint
arXiv:1712.07420, 2017.

6



Supplemental Material
SNACs: A Visual Encoding for Sequential Neural Network

Architectures
Dylan Cashman
Tufts University

Medford, United States
dylan.cashman@tufts.edu

Adam Perer
Carnegie Mellon University

Pittsburgh, United States
adam.perer@cmu.edu

Hendrik Strobelt
MIT IBM Watson AI Lab
Cambridge, United States
hendrik.strobelt@ibm.com

ABSTRACT
Convolutional Neural Networks (CNNs) and other sequen-
tial artificial neural networks are used extensively in many
domains because of their ability to fit many different types
of problems over unencoded data, such as images or audio.
While such models are deployed extensively, no visual encod-
ing exists that can facillitate comparison and inspection of
multiple architectures in a space-efficient way. In this work,
we introduce a new visual encoding, Sequential Neural Ar-
chitecture Chips (SNACs), that conveys layer types and order,
upsampling and downsampling, as well as skip connections.
Using the plate notation of graphical models, SNACs can en-
code very deep networks such as ResNet using a minimal
amount of screenspace. SNACs are expected to be used in
both static formats such as publications, blog posts, and techni-
cal documentation, as well as dynamic formats such as visual
analytics systems. SNACs will be released in an open source
code repository as well as a web tool for constructing SNACs.

INTRODUCTION
As Artifical Neural Networks (ANNs) become more prevalent,
they become communicated in many different forums and me-
dia. When a neural network is presented in a formal writeup,
it is typically described with both a textual description of the
hyperparameters used as well as an illustration of the topology
of the network. This standard description is a poor fit, however,
for many other communication scenarios, such as a high-level
report, or usage in a visual analytics system. Instead, there
exists a need for a visual encoding of neural networks that
efficiently trades off space for information.

In this work, we present such a visual encoding, called Se-
quential Neural Architecture Chips (SNACs). SNACs encode
the sequence of layers found in a sequential neural network, as
well one other property about each layer, such as the size of the
data flowing through the layers, or the number of parameters.
By using plate notation popular in statistical graphical models,

they are able to portray very deep networks that have repet-
itive blocks, such as the popular Residual Network used for
computer vision tasks. In an interactive setting, they also pro-
vide details-on-demand via mouse hover, and can be toggled
between various sizes and shapes. They can be used in aca-
demic publications, blog posts, and dynamic visual analytics
systems.

VISUAL ENCODINGS FOR NEURAL NETWORKS
ANN architectures are traditionally shown one at a time, either
as part of a figure in a publication or in a detailed graph view in
an application. While these encodings are effective, they have
severe limitations in their usage. A figure typically takes up a
large portion of a printed page, and in an application such as
Facebook’s Activis [6] or Google’s TensorBoard [1] a single
network is the focus of the entire application. These encodings
take up so much space because they aim to communicate
to an expert user as much available information about the
corresponding network. Table 1 shows a non-exhaustive set
of previous visual encodings of neural networks. A trend is
apparent where earlier encodings visualize the full detail of the
network’s topology, such as the individual cell connections,
while later encodings abstract such information away.

The designer of a visual encoding must make two types of
decisions: which data features to visualize, and what visual
channels to which those features map [2]. Encodings that
visualize too many features can suffer from complexity or
space demands that limit the practicality of the encoding, as
in the examples above, and can require significant cognitive
load from the viewer. Thus, the designer must make a tradeoff
between the coverage of data supported by an encoding, and
the versatility of the resulting encoding.

Before creating an entirely new encoding, it is necessary to
review currently existing encodings to see if a solution al-
ready exists. Popular encodings for network architectures are
summarized in Table ??. The cell-level computation graph
increases its usage of space linearly with the number of nodes
in the network, so it would be impossible to visualize multiple
models, if not even a single deep convolutional model, and
would not allow for multiple resolution views. Similarly, the
layerwise-verbose illustration and layer-wise filter illustration
face scaling issues. Although they reveal very interesting de-
tails, such as the filters of the model, that might be useful in
comparing one model to another, our system hopes to allow



the user to compare dozens or even hundreds of models at
once. The Tensor-level computation graph is able to describe
almost any possible neural network, and might be able to ad-
dress scaling by vigorously applying aggregation methods, but
its layout does not facillitate easy comparison.

The previous encodings outlined in Table 1 mostly convey
a large amount of information, and thus are limited in their
versatility. In contrast, we aim to find an encoding that is
highly versatile and space-efficient. We also want an encoding
that can be used as a component of a larger visual analytics
system. In particular, we want an encoding that supports the
following constraints.

• C1: Visualizing multiple models concurrently for com-
parison. A user may want to compare models for the sake
of model selection or comparison. An effective visual en-
coding will not only need to be small enough to fit multiple
architectures on the same page or screen, but it will need to
support paradigms for visual comparison such as juxtaposi-
tion, as suggested by Gleicher [4].

• C2: Compatible with multiple levels of detail depend-
ing on screen space and user guidance. The user might
want to view an overview of dozens of models to view large-
scale patterns between models. It is also likely that a system
would allow the user to drill down to compare some subset
of the models, or even to inspect a single model in depth.
Different visual encodings could be used, but it would be
better if a single visual encoding could comfortably transi-
tion between different resolutions, in order to maintain the
user’s mental model.

• C3: Encode as much relevant information as possible.
Any visual encoding designer must decide on the subset of
features that they provide a visual mapping for. For deep
models, there is an enormous amount of potential features
to visualize, such as the individual layer activations and
weights, the layer sizes, the layer order, skip connections,
and various hyperparameters like the learning rate. The
more attributes that are visualized, the greater the visual
complexity of the of the resulting encoding. The encoding
must trade off between coverage of data and portability of
usage of the encoding, based on the intended usage.

• C4: As large coverage of model architectures as possi-
ble. An ideal encoding should completely cover the space
of network architectures. However, as with C3, covering
more architectures conflicts with other design goals. Thus,
our encoding must cover as many architectures as possible
without sacrificing our other constraints.

SEQUENTIAL NEURAL ARCHITECTURE CHIPS (SNACS)
The simplified computation graph shown in Table 1 and used
to describe He et. al’s popular ResNet architecture [5] amongst
others, satisfies many of our needs. In that encoding, similar
to the tensor-level computation graph, each node represents
a transormation of the data flow. However, the computation
graph is simplified by removing a lot of information of the
architecture, including the data size and some hyperparameters.
It features a compact design with a fixed width and a simple

layout. However, we make some modifications to be more
efficient with screen space and to enable comparison.

First, we choose to only support sequential models with skip
connections. While cutting-edge networks found in the re-
search literature include many non-linear topologies such as
U-networks, a significant portion of models in production
are based off of popular image detection CNNs such as Ima-
geNet[8] or ResNet[5]. Sequential networks can be naturally
aligned along a single dimension, enabling easy comparison
along the orthogonal axis. This makes the edges between
nodes mostly superfluous, since adjacency of layers can im-
ply connections between them. In contrast, supporting non-
sequential models necessitates supporting any potential net-
work topology, and there is no visual encoding that allows for
a unique linear layout of arbitrary graphs.

Second, by writing the names of layers, such as “Conv”, “Max-
Pool”, and “LocalRespNorm” while double-encoding the layer
types via color, the simplified computation graph wastes space,
and makes graph’s nodes larger than needed. Finally, there are
visual channels in this encoding that are still left unused; the
size of each node could be used to encode some parameters.

With these considerations in mind, we present our visual en-
coding for network architectures, SNACs. SNACs are able
to visualize most sequential neural network models, and can
display them at several different sizes.

Figure 1. The SNAC visual encoding for neural network architectures.
This model has a two convolutions, each followed by an activation, and
concludes with an average pooling layer and a fully connected layer.
Each block represents a layer in a sequential CNN. Color encodes the
type of layer, while width can be used to encode a numeric attribute such
as tensor width. Additional attributes can be made available via tooltip
if SNAC is deployed in a web application. SNAC functions at several
different sizes and fixed widths.

The primary visual encoding in a SNAC is the sequence of
types of layers. This is based on the assumption that the order
of layers is the most important distinction in architectures,
considering that all previous encodings, including those out-
lined in Table 1, all displayed this information. Layer type is
redundantly encoded with both color and symbol. The sym-
bol is the first letter of the name of the layer. Beyond the
symbol, some layers have extra decoration. Activation layers
have glyphs for three possible activation functions: hyperbolic
tangent (tanh), rectified linear unit (ReLU), and the sigmoid
function. Dropout also features a dotted border to signify that
some activations are being dropped. The second type of data
encoded by an archip is the size of the data flowing through
the network, since this is the second most frequently encoded
piece of information in existing visual encodings of network
architectures. The height of each block corresponds to the data



Table 1. Visual Encodings for neural networks.
Source Description Encodings

Cell-level Computation Graph

[11]

Each cell in inference
is represented as a node,
activations can be encoded via
size or color.

activation size,
layer types,
filter and pool size,
architecture sequence

Layer-wise Verbose Illustration

[13, 8, 9]

Each layer is shown
side-by-side, and the
distances in the diagram
roughly map to the
size of layers and filters.

activation size,
layer types,
filter and pool size,
stride,
architecture sequence.

Layer-wise Filter Illustration

[7]

Each layer is shown
side-by-side, and the
layers are encoded as the
learned filters.

activation size,
layer types,
filter and pool size,
filter and pool values,
architecture sequence.

Tensor-level Computation Graph

[6, 12]

Operations in inference
are represented as nodes,
and data flow typically
is encoded in edges.

activation size,
layer types,
filter and pool size,
architecture sequence,
data flow size.

Simplified Computation Graph

[10, 5]
Each layer is shown
in a directed graph
as a fixed width glyph.

layer types,
filter and pool size,
stride,
architecture sequence.

size on a bounded log scale, to indicate to the user whether the
layer is increasing or decreasing the dimensionality.

Many solutions are optimally solved using very deep net-
works, such as VGGnet or Resnet, and yet such deep networks
require rendering repeated modules and redundantly using
screen space. To address these types of models, archips make
use of plate notation, a technique from the machine learning
literature for expressing repeated dependencies in graphical
models [3]. Whenever a pattern is repeated N times contigu-
ously in a sequence of layers, that pattern is extracted as a
plate, and the number of repetitions is displayed to the user.
Archips use regular expressions to find identical patterns in
sequential architectures so that very deep models can be dis-
played as succinctly as possible. An example can be seen in
figure 3. Some optimizers are also able to create networks
with skip connections, in which output of one layer is fed to
both the succeeding layer and a layer in the future. Archips
can represent skip connections via internal, semi-transparent
arrows, as seen in figure 2. While there is a scaling issue with
internal arrows, allowing for external arrows would cause the

visual footprint of an archip to grow outside of its rectangular
bounding box, violating the constraints C1 and C2.

Figure 2. SNAC has support for skip connections, which are prevalent
in many sequential CNNs, such as ResNet.

In order to satisfy the need for multiple levels of detail de-
pending on screen space and user guidance (C2), archips have
several different layouts, including fixed with, variable width,
and squished forms. These multiple forms can fit many differ-
ent macro layouts within an application in order to facillitate
comparison between many models (C1). They are compact
and succinct while being able to represent all sequential CNN
models (C4) and display parameters about each layer, such as
tensor size or dropout rate (C3).



Figure 3. Many large CNNs can be visually encoded in a small space by
taking advantage of repetitions in their sequential layers. In this figure,
the last two layers we see are actually repeated twice. To visualize this
repetition, SNAC makes use of a method from graphical models in the
machine learning literature called plate notation.

Online tool

Figure 4. SNACs can be generated via a webpage by uploading a
JSON description of a sequential model. https://www.eecs.tufts.
edu/~dcashm01/snacs/

The code base for SNACs will be made open source. However,
in order to facillitate easy usage of the visual encodings, es-
pecially for casual usage in blog posts or in publications, it is
important that they be trivially easy to produce. For this reason,
we have developed a single page web application, as seen in
Figure 4 that allows users to upload descriptions of sequential
models in JSON that automatically generates SNACs.

EXAMPLE USAGE
SNACs can be used as a colorful component of figures in deep
learning literature, as made available in the tools described
in the previous section. However, its use in visual analytics
application was a significant factor in the design decisions
made. In this section we provide some examples of how a
SNAC could be used in a visual analytics application.

Figure 5(a)-(c) are all views within a different tool being devel-
oped to understand model architecture searches for automated
machine learning. In Figure 5(a), SNACs are used in a model
drawer, a sorted, filtered selection of model architectures.
SNACs here have a fixed width shadow, but variable widths,
to allow a user to quickly view whether a model is embedding
data in a higher or lower dimensional space. SNACs take
advantage of the space allotted to let users visually compare
and contrast both the sequence of layers and the size of the
data passing through the layers. Figure 5(b) shows the evo-
lution of validation accuracy of multiple randomly spawned
models by wall time. When the user mouses over a particular
model’s validation accuracy curve, its corresponding SNAC
pops up in a tooltip to show the user some information about

that model’s architecture in a concise, unintrusive way. Lastly,
Figure 5(c) demonstrates how SNACs can be used as glyphs.
It portrays several hundred models in a 2-D scatter plot de-
picting validation accuracy vs. wall time. The model’s SNAC,
and some text giving its validation accuracy, act as a glyph to
provide the user of some sense of the models being embedded
in the model architecture search process. While this tactic
suffers from severe overplotting, it illustrates the strength of
a visual encoding for neural network architectures that are
space-efficient.

CONCLUSION
In this work, we describe SNACs, a space-efficient visual en-
coding for sequential neural network architectures. SNACs
trade off less information for much more versatility than exist-
ing visual encodings for neural network architectures. They
are released in several public tools for use in publications, blog
posts, and interactive tools. We also provide several examples
of SNACs in use in visual analytics applications in current
development.

ACKNOWLEDGMENTS
This work was partially supported by DARPA grant FA8750-
17-2-0107 and the IBM Research Cambridge internship pro-
gram.

REFERENCES
1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015.
TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015).
https://www.tensorflow.org/ Software available from
tensorflow.org.

2. Jacques Bertin. 1983. Semiology of graphics: diagrams,
networks, maps. (1983).

3. Wray L Buntine. 1994. Operations for learning with
graphical models. Journal of artificial intelligence
research 2 (1994), 159–225.

4. Michael Gleicher. 2018. Considerations for Visualizing
Comparison. IEEE transactions on visualization and
computer graphics 24, 1 (2018), 413–423.

5. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

6. Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and
Duen Horng Polo Chau. 2018. ActiVis: Visual

https://www.eecs.tufts.edu/~dcashm01/snacs/
https://www.eecs.tufts.edu/~dcashm01/snacs/
https://www.tensorflow.org/


Figure 5. Three examples of SNACs being used in visual analytics applications, each described in the text. SNACs are space-efficient and versatile, and
can fit the space and positioning constraints required by systems that help users compare architectures.

Exploration of Industry-Scale Deep Neural Network
Models. IEEE transactions on visualization and
computer graphics 24, 1 (2018), 88–97.

7. Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez.
2014. Evolving deep unsupervised convolutional
networks for vision-based reinforcement learning. In
Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. ACM, 541–548.

8. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems. 1097–1105.

9. Yann LeCun, Yoshua Bengio, and others. 1995.
Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks
3361, 10 (1995), 1995.

10. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich, and
others. 2015. Going deeper with convolutions. Cvpr.

11. F-Y Tzeng and K-L Ma. 2005. Opening the black
box-data driven visualization of neural networks. In
Visualization, 2005. VIS 05. IEEE. IEEE, 383–390.

12. Kanit Wongsuphasawat, Daniel Smilkov, James Wexler,
Jimbo Wilson, Dandelion Mané, Doug Fritz, Dilip
Krishnan, Fernanda B Viégas, and Martin Wattenberg.
2018. Visualizing Dataflow Graphs of Deep Learning
Models in TensorFlow. IEEE transactions on
visualization and computer graphics 24, 1 (2018), 1–12.

13. Matthew D Zeiler and Rob Fergus. 2014. Visualizing and
understanding convolutional networks. In European
conference on computer vision. Springer, 818–833.


	Introduction
	Model Architecture Search Data
	MAST: A Model Architecture Search Tool
	Workflow

	Discussion

