
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

MONITORING OPAQUE LEARNING SYSTEMS

Leilani H. Gilpin
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
lgilpin@mit.edu

ABSTRACT

Machine learning models and their underlying debugging methods are specific
and not applicable to other data sets and models without much effort. The goal of
this work is to improve machine learning robustness with an adaptable monitoring
framework for identifying and explaining anomalous output that can be easily
customized for different domains with a common vocabulary and rule language.
The input to the monitoring system is the output of an opaque learning system,
which is parsed into a common language. The monitor then uses a reasoner to
precisely find the important concepts leading to contradictions between expected
behavior and anomalous behavior, and tracks that anomalous behavior back to
a constraint or rule. The output of the system is a human-readable explanation
succinctly describing the core reasons and support for an intended behavior.

1 INTRODUCTION

When machine learning algorithms make mistakes, we would like to know why the error occurred.
Explanatory systems that provide the core reasons and premises for an intended behavior can an-
swer this question. But many of these systems require access and knowledge about the underlying
learning mechanism, which may be implausible (Marcus, 2018). Further, the learning algorithms
could be opaque or proprietary, so we want to create a way to monitor their output, with limited
knowledge of underlying system. In addition, we want these algorithms to be able to support their
decision or output with an explanation or reason. The ability to provide coherent explanations of
complex behavior is important in the design and debugging of such systems, and it is essential to
give us all confidence in the competence and integrity of machine learning algorithms and aids.

With the need for malleable, self-explaining systems, this work examines a new self-monitoring
framework that can impose constraints of reasonableness for the output of machine learning sys-
tems in multiple domains. With the input of a domain-specific knowledge base and rules, it uses
a reasoner, data parser with a ontology, and explainer to judge and explain whether the input is
reasonable or not. This paper demonstrates how this technology can be used to detect and explain
anomalous output after the fact, and also motivate its use as a real-time monitoring system. We also
introduce the use of explanations as a type of feedback to learn the rules and reasons, and make
better judgments in future iterations.

2 RELATED WORK

Monitoring for reasonability is an open topic in computer science. Collins & Michalski (1989)
present a formal ontology for reasonability, but it lacks a structural implementation. Cohen &
Levesque (1988) present a logical theory of reasonable actions by representing “language as ac-
tion.” Their method defines a set of reasonable action expressions from logic. Although formal
approaches are provably correct, they do not lend themselves well to an implementation. Many have
tried to make ontologies and generalizations of these kinds of judgments, but they remain specific to
the machine specifications (Abellan-Nebot & Subirón, 2010) or software specs.

Combining knowledge bases and web standards has been implemented as ConceptRDF; a conver-
sion of ConceptNet to RDF/XML format (Najmi et al., 2016), although the rules are not applied

1



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

to working system. ConceptNet and rules have been combined for emotion recognition (Shaheen
et al., 2014), but this work is a combination of rules and commonsense for detecting and explaining
reasonableness.

Reasoning systems have been developed to keep track of consistencies. This work is focused on
making a generic monitor using semantic web technologies with RDF to represent logs and AMORD
In RDF (AIR) (Khandelwal et al., 2010) as a rule language that supports AMORD-like constructs
Kleer et al. (1978). AMORD is a rule-based problem solver that keeps track of dependencies, similar
to truth maintenance systems (De Kleer, 1986).

AIR describes properties that can be used to define policies and a reasoner to provide reasons and
explanations. RDF 1 is an acronym for the Resource Description Framework, which is a World Wide
Web Consortium (W3C) standard. W3C is the main international standards organization for the
World Wide Web. While RDF is used mainly for managing and representing data in web frameworks
and resources, it is also used in a variety of knowledge engineering tasks due to its triple-store format.
This format is natural for representing language (as subject-predicate-object) and for representing
premises.

3 IMPLEMENTATION

The monitoring system can provide accurate judgments of reasonableness and convincing explana-
tions of reasonableness by applying the system to two use cases: first descriptions of perception
(which could be generated from a machine learning scene understanding systems), and secondly
vehicle plans (from an autonomous vehicle planning system, which could be proprietary).

The monitoring system receives a natural language description as input. The monitor takes this
input, parses it into a log file, which is compared with rules to produce the reasons and premises
leading to an explanation. The output of the monitoring system is a judgment and an explanation
of whether the input is reasonable or not. The monitoring system should satisfy the following two
properties.

1. The monitor can detect clearly unreasonable input.

2. The explanations generated from the monitoring system should be “useful.” Although cur-
rent efforts are focused on ways to use these explanations for feedback to make better
decisions, for the purposes of this work, I ask whether a human user finds the explanations
to be convincing.

For this work, reasonableness is defined as abiding to a set of commonsense rules. In the case of
vehicle planning, these are the rules of the road. For the perception example, these are commonsense
rules for the actor and object of the input description. These commonsense decompositions are
detailed in previous work (Gilpin et al., 2018), in which the rules and representations are specific to
the use case of an opaque “scene understander” annotating images with text descriptions.

3.1 LOG GENERATION AND ONTOLOGY

In order for the monitor to be generic, it’s required that the log, or data, is constructed in the RDF,
which is a World Wide Web Consortium (W3C) standard2. As mentioned in Section 2 RDF al-
lows for data descriptions and relationships between data in terms of triples. The RDF log contains
the system state in terms of symbolic triple relations. An example RDF log is in Figure 2 in the
Appendix. It contains the subject, predicate and object of the input description, and relevant de-
scriptions aggregated from the commonsense database. This aggregation utilizes RDFS (the RDF
Schema), a semantic extension of RDF, allowing for additional mechanisms for describing groups
of related resources and the relationships between these resources.

For perception, I generate the RDF log for a description by parsing for relevant concepts. From the
input of a natural language description, I use a regex parser in python to extract the noun phrase,
verb phrase, context information (prepositional phrases) to identify the actor, object, and action of

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-schema/

2

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/


Presented at ICLR 2019 Debugging Machine Learning Models Workshop

the description. The development of an ontology is incorporated with the process of developing
the log data. For this perception description use case, I develop a set of anchor points to extract
commonsense knowledge from ConceptNet, and primitive actions represented as a conceptual de-
pendency primitives. This conceptual dependency primitive will be used to construct rules, with the
actor, object, and context information as input. An example of a parsed description represented as
an RDF log is shown in the Appendix in Figure 2.

For vehicle planning, the process is extended with the same parsing process, the representation is
extended to include vehicle primitive actions like yield, move (with speed and direction), stop and
turn. Context is also extended to cover external factors that are specific to vehicle planning like stop
lights, pedestrians, and weather.

3.2 RULE INPUT

It is required that the rules are written in AIR (AMORD In RDF)3. AIR is a Semantic Web-based
rule language that can generate and track explanations for its inferences and actions and conforms
to Linked Data principles. Another advantage of AIR is that it supports Linked Rules, which can be
combined and reused in a manner similar to Linked Data. Since the AIR explanations themselves
are Semantic Web data, they can be used for further reasoning. A benefit to using these Semantic
web standards and data is that you can find related data, rules and concepts easily.

For the perception problem, the rules are from Schanks’ conceptual primitives (Schank, 1972). An
example rule for the primitive “MOVE” is that the actor must be animate, or the actor must be
propelled by something. Other rules require more commonsense knowledge—for “INGEST” the
action of consuming food and drink must be through the mouth or stomach of the actor.

For the vehicle planning problem, rules are derived from the Cambridge driving handbook. These
rules can be easily changed to express the rules of the road for other states and areas. For example,
the “right on red” turning rule is explicitly banned in most intersections in the greater Boston area,
although legal in the state of Massachusetts. Some basic driving rules are shown in the Appendix in
Figure 3.

3.3 REASONING AND EXPLANATIONS

AIR nicely captures the reasons and descriptions necessary to output explanations. There is a bit of
post-processing, since the output is written in RDF. Using python and RDFLIB4, the output RDF
file is parsed for the justifications and rule descriptions, which are combined together into a human-
readable explanation. For example, if the pedestrian rule is violated, then the resulting description is
“Pedestrian detected.” This is combined with the other rules fired (like the speed rule-do not make a
sudden stop at high speeds) to create the explanation– “Since there is a pedestrian in the road, move
is unreasonable.”

4 EVALUATION

The monitoring system is evaluated in two ways–by validating the judgment of reasonableness, and
invoking a user study to evaluate how well our system can generate explanations. The output of the
monitor is binary judgment, indicating whether the proposed input is reasonable or not, and a human
readable explanation that explaining that judgment. Examples of these explanations can be found
the appendix. With this evaluation, this work aims to answer the following two questions:

1. How accurate is the system at detecting unreasonability?

2. Are user’s convinced that the statements provide a convincing explanation for reasonable
or unreasonable input?

3http://dig.csail.mit.edu/2009/AIR/
4https://github.com/RDFLib/rdflib

3

http://dig.csail.mit.edu/2009/AIR/
https://github.com/RDFLib/rdflib


Presented at ICLR 2019 Debugging Machine Learning Models Workshop

4.1 VALIDATION

Since I have not been able to implement our model on a deployed system with real data, I developed
our own test sets based on uses cases from interviews with potential customers. The perception
description test set is from 100 descriptions that I previously developed for a specific system. The
descriptions are equally split between unreasonable and reasonable, with different verbs, subjects,
objects, and contexts.

For the vehicle action test cases, I developed 24 examples. These examples were generated from
four lights (red, yellow, green, no light), three motions (move forward, turn, stop), and a binary
choice for obstructions (pedestrian or no pedestrian). For validation purposes, I checked that our
monitor can determine whether a perception description or a vehicle action is reasonable or not.
Each description of a vehicle action or perception description is labeled with a 1 or 0 as reasonable
(1) or unreasonable (0).

The adaptable monitoring system judges reasonableness with 100% accuracy on the vehicle action
test set. Since there are a countable number of rules and combinations, this makes sense. However,
when deploying the system in a working vehicle simulation or platform, I will need to create more
sophisticated and complex rules, which may cause the monitor to perform less accurately.

4.2 USER STUDY

In order to evaluate whether our explanations are convincing, I recruited 100 users to evaluate our
explanations. Users were recruited from Amazon Mechanical Turk and instructed to rate each ex-
planation on a five point Likert scale from “not convincing” to “very convincing.”

Participants were presented with 40 explanations, evenly split between reasonable and unreasonable
judgments. There were 20 vehicle planning explanations, and 20 perception description examples.
I presented only 40 explanations to avoid exhaustion. Participants were instructed rate how con-
vincing the explanations were, on a scale from 1 to 5. The average score over all explanations was
3.94, indicating that most users were moderately convinced that the explanations. The survey also
included an optional question for users to explain why they choose their indicated rating for each
explanation. A table of a sample of explanations for the four types of explanations tested: reason-
able vehicle plans, unreasonable vehicle plans, reasonable perception descriptions, and unreasonable
perception descriptions is in the Appendix in Table 1.

Users were convinced of the monitor’s explanations, since all explanations were rated at an average
above 3.5. A distribution of ratings can be found in Figure 1. In general, users were slightly more
convinced by two factors. Firstly, reasonable were rated higher than unreasonable statements. This
could be due to positive bias (Kareev, 1995), demonstrating that people are generally more favorable
to positive examples. Secondly, perception description explanations (both reasonable and unreason-
able) were rated higher than vehicle planning explanations. This could be attributed to users being
less familiar with vehicle rules. Both differences were not statistically significant.

5 DISCUSSION AND FUTURE WORK

This work presents a framework and a for a generic monitoring system that can judge and explain
the reasonableness of a machine learning algorithms’ output, given a set of rules. The log data is
represented in RDF and the rules are written in AIR as to make the system a framework that is easy
to augment and adapt to other applications.

Although this system works fairly well in practice, it does have some obstacles to overcome to be-
come a deployable system. I developed a parser to represent our data in RDF, but this may have to be
done manually in different applications. Our use case of a perceptual “scene understander,” some-
times referred to as an opaque, deep neural network, is over-simplified for demonstration purposes.
In future work, I may want to apply this system to an actual image captioning system, although their
description of “reasonableness” is slightly different. In that context, reasonableness is a caption that
accurately describes the intended photo. That kind of monitoring is much harder to enforce than
the reasonableness rules that I have defined in this paper. This system is currently being integrated

4



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Figure 1: Average rating of 40 explanations over 100 user trials. There were 4 sets of explanations
(from left to right): reasonable vehicle plans, unreasonable vehicle plans, reasonable perception
descriptions, and unreasonable perception descriptions

into the RACECAR platform5 as a preliminary application. Our end goal is to work with vehicle
engineers to alter our monitoring system for vehicle actions that can detect and explain false posi-
tives and false negatives with sensor information. Our hope is that by implementing such a system
with a safety driver, they will be able to interact with our system and provide real-time feedback and
evaluation of the system. I am also currently adding capability to learn rules automatically. These
rules, or the output of such rules would need to be verified or labeled by a user in a working system.

The use cases are simplified for demonstration purposes. The vehicle actions have limited context
and perceptual use case is simplified. Also, the details of the types of rules for the perception
description use case is outline in prior work Gilpin et al. (2018). In future work, these cases will be
expanded to cover complex corner cases that are typically not well-represented in the training data.

6 CONCLUSION

Machine learning algorithms work fairly well in practice, but when they fail, diagnosing the root-
cause is difficult. More so, developing an explanation of how and why they failed is even harder.
Self-monitoring constructs, like the one proposed in this paper, is a small step towards developing
machines without errors, that are more trustworthy, and that perform reasonably, as we expect them
to.

Understanding and detecting inconsistencies in autonomous systems is an interesting and challeng-
ing problem, especially for opaque learning systems. In general, these complex algorithms work
very well in practice. However, a monitor, like the one proposed in this paper, can provide a fi-
nal “sanity-check” machine learning algorithms, especially those making mission-critical or safety-
critical tasks.

5http://fast.scripts.mit.edu/racecar/

5

http://fast.scripts.mit.edu/racecar/


Presented at ICLR 2019 Debugging Machine Learning Models Workshop

REFERENCES

Jose Vicente Abellan-Nebot and Fernando Romero Subirón. A review of machining monitoring
systems based on artificial intelligence process models. The International Journal of Advanced
Manufacturing Technology, 47(1-4):237–257, 2010.

Philip R Cohen and Hector J Levesque. Rational interaction as the basis for communication. Tech-
nical report, SRI International, 1988.

Allan Collins and Ryszard Michalski. The logic of plausible reasoning: A core theory. Cognitive
science, 13(1):1–49, 1989.

Johan De Kleer. An assumption-based tms. Artificial intelligence, 28(2):127–162, 1986.

Leilani H. Gilpin, Jamie C. Macbeth, and Evelyn Florentine. Monitoring scene understanders with
conceptual primitive decomposition and commonsense knowledge. Advances in Cognitive Sys-
tems, 2018.

Yaakov Kareev. Positive bias in the perception of covariation. Psychological review, 102(3):490,
1995.

Ankesh Khandelwal, Jie Bao, Lalana Kagal, Ian Jacobi, Li Ding, and James Hendler. Analyzing the
air language: a semantic web (production) rule language. In International Conference on Web
Reasoning and Rule Systems, pp. 58–72. Springer, 2010.

Johan de Kleer, Jon Doyle, Charles Rich, Guy L Steele Jr, and Gerald Jay Sussman. Amord: A
deductive procedure system. Technical report, MASSACHUSETTS INST OF TECH CAM-
BRIDGE ARTIFICIAL INTELLIGENCE LAB, 1978.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

Erfan Najmi, Zaki Malik, Khayyam Hashmi, and Abdelmounaam Rezgui. Conceptrdf: An rdf
presentation of conceptnet knowledge base. In Information and Communication Systems (ICICS),
2016 7th International Conference on, pp. 145–150. IEEE, 2016.

Roger C Schank. Conceptual dependency: A theory of natural language understanding. Cognitive
Psychology, 3(4):552–631, 1972.

S. Shaheen, W. El-Hajj, H. Hajj, and S. Elbassuoni. Emotion recognition from text based on
automatically generated rules. In 2014 IEEE International Conference on Data Mining Work-
shop (ICDMW), volume 00, pp. 383–392, Dec. 2014. doi: 10.1109/ICDMW.2014.80. URL
doi.ieeecomputersociety.org/10.1109/ICDMW.2014.80.

6

doi.ieeecomputersociety.org/10.1109/ICDMW.2014.80


Presented at ICLR 2019 Debugging Machine Learning Models Workshop

APPENDIX

foo:my_actor
a ont1:Subject ;
ont1:phrase "a wall" .

foo:my_object
a ont1:Object ;
ont1:phrase "the street" .

cd:move
a ont1:Move ;
ont1:actor foo:my_actor ;
ont1:object foo:my_object ;
ont1:verb "cross" .

Figure 2: The RDF log of “a wall crossing the street.”

:safe_car_policy a air:Policy;
air:rule :light-rule;
air:rule :pedestrian-rule;
air:rule :right-turn-rule;
air:rule :speed-rule .

:pedestrian-rule a air:Belief-rule;
air:if {
foo:some_pedestrian
ont1:InPathOf foo:my_car.

};
air:then [

air:description ("Pedestrian detected");
air:assert [air:statement{

foo:my_car
air:non-compliant-with

:safe_car_policy .}]];
air:else [

air:description ("No obstructions");
air:assert [air:statement{

foo:my_car
air:compliant-with
:safe_car_policy .}]] .

:light-rule a air:Belief-rule;
air:if { :EVENT a :V;

ont1:Location
foo:some_traffic_light.

};
air:then [air:rule :traffic-light-rule].

Figure 3: A subset of the safe-driving rules written in AIR.

7



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Figure 4: The system diagram schematic of the monitoring system.

Reasonable Unreasonable
Vehicle Plans Although green means go, green also

means yields to pedestrian in the road.
Since there is a pedestrian in the road,
waiting is reasonable. So it is reason-
able for the vehicle to wait.

A yellow light means ’stop if safe’,
which is inconsistent with go. So it is
unreasonable for the vehicle to go.

Perception Descriptions Although a tree cannot propel some-
thing on its own, a storm can propel a
stationary object to move. So it is rea-
sonable for a tree to hit a car in a storm.

A laptop is an object that cannot move
on its own. So it is unreasonable for a
laptop to move without context.

Table 1: Comparison of explanation descriptions for the four types of explanations tested: reason-
able vehicle plans, unreasonable vehicle plans, reasonable perception descriptions, and unreasonable
perception descriptions.

8


	Introduction
	Related Work
	Implementation
	Log Generation and Ontology
	Rule Input
	Reasoning and Explanations

	Evaluation
	Validation
	User Study

	Discussion and Future Work
	Conclusion

