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ABSTRACT

Machine learning models are being deployed in mission-critical settings, such as
self-driving cars. However, these models can fail in complex ways, so it is im-
perative that application developers find ways to debug these models. We propose
adapting software assertions, or boolean statements about the state of a program
that must be true, to the task of debugging ML models. With model assertions,
ML developers can specify constraints on model outputs, e.g., cars should not dis-
appear and reappear in successive frames of a video. We propose several ways to
use model assertions in ML debugging, including use in runtime monitoring, in
performing corrective actions, and in collecting “hard examples” to further train
models with human labeling or weak supervision. We show that, for a video an-
alytics task, simple assertions can effectively find errors and correction rules can
effectively correct model output (up to 100% and 90% respectively). We addi-
tionally collect and label parts of video where assertions fire (as a form of active
learning) and show that this procedure can improve model performance by up to
2×.

1 Introduction

ML is increasingly used in mission-critical contexts, such as in self-driving vehicles (Bojarski et al.,
2016) or in setting bail (Thompson, 2017). However, ML models can exhibit unpredictable behavior
on real world-tasks. For example, Tesla’s cars suffered multiple incidents where they accelerated
into highway lane dividers (Lee, 2018) and Google’s autonomous vehicle collided with a bus because
the car expected the bus to yield, but the bus did not (Ziegler, 2016). Thus, it is critical to be
able to debug ML models and applications. Unfortunately, there is currently no standard means of
debugging ML models.

In this work, we investigate the potential to apply one of the most basic techniques in software
quality assurance—assertions (Goldstine et al., 1947; Turing, 1989)—to debug and improve ML
models. Software engineers have built software for a wide range of mission-critical settings, such as
spaceships and medical devices, for decades using a variety of quality assurance and error detection
techniques. Program assertions, or boolean statements that must be true at execution time (e.g., the
length of an array must be greater than zero), are used as the “first line of defense” in software and
have been shown to significantly reduce the number of bugs (Kudrjavets et al., 2006).

We explore several means of using model assertions, assertions applied to the outputs of ML models,
to debug and improve models. We consider both “exact assertions,” deterministic functions on model
outputs that are similar to traditional program assertions, and “soft assertions,” which have high, but
not perfect, precision. For example, when identifying and localizing objects in video for an object
detection task, detected objects can “flicker” in and out between consecutive frames (Figure 1),
or can be highly overlapped or nested (Figure 2). An assertion over model outputs could easily
detect both these errors. It may be useful to make these soft assertions because some rare real-world
situations do have flickering and nested objects (e.g., a video advertisement on the side of a bus).

We explore several ways to use model assertions, at runtime and at training time:
• Runtime monitoring: At runtime, model assertions can be used to collect statistics on incorrect

behavior.
• Corrective action: At runtime, model assertions can be used to trigger corrective action, e.g., by

returning control to a human operator.
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(a) Frame 1, base SSD (b) Frame 2, base SSD (c) Frame 3, base SSD

(d) Frame 1, base SSD (e) Frame 2, fixed frame (f) Frame 3, base SSD

Figure 1: Top row: example of flickering in three consecutive frames of a video. The object de-
tection method failed to identify the car in the second frame. Bottom row: example of correcting
the output of a model. The car bounding box in the second frame can be automatically filled by
averaging the boxes around it. Best viewed in color.

(a) Example 1.
(b) Example 2.

Figure 2: Examples of when the multi-box assertion fires. Best viewed in color.

• Active learning: At training time, model assertions can be used in active learning (Lewis & Gale,
1994) to select which data points to label. As model assertions are exact or high-precision, the
output of the model will likely be wrong when the assertion triggers.

• Weak supervision: In some cases, analysts can write automatic corrective rules to propose new
labels when an assertion fires, which can then be used as a form of weak supervision (Ratner et al.,
2017a; Varma & Ré, 2018) to retrain the model on data where the assertion failed. For example,
for the flickering assertion, a corrective rule might fill in labels from adjacent frames.

We evaluate model assertions on object detection for video. We use a single-shot detector (SSD) (Liu
et al., 2016) pretrained on MS-COCO Lin et al. (2014) to determine the location of cars in a street
intersection and find that it performs poorly (33.2% mAP). As a result, we implement two asser-
tions over the output of the detector. We demonstrate that these simple assertions can be written
with near 100% precision. We additionally collect and label frames of video where the assertions
were triggered, which we then use to further train SSD as a form of active learning. We show this
procedure can result in up 2× improvement mAP (70.5%). Finally, we show that weak supervision
using correction rules can improve mAP by 15.9% with no human labeling.

2 Methods

Model assertions are written as functions over model outputs. For video analytics, model assertions
accept the output of the model at the current frame and a limited history. For example, for object
detection, the assertion would use the bounding boxes from the current frame and (for example)
the past 10 frames as input. As with program assertions, model assertions can perform arbitrary
computations. Finally, model assertions can have corrective rules associated with them, which can
generate weak labels for further retraining, e.g., filling in boxes for flickering.
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1 for i in range(cur_frame - 1, cur_frame - 10):
2 similar_boxes = get_similar_cars(cur_boxes, past_boxes[i])
3 if len(similar_cars) == 0: # no similar boxes
4 for j in range(i - 1, cur_frame - 10):
5 overlapping_boxes = get_similar_cars(cur_boxes, past_boxes[j])
6 if len(overlapping_boxes) == 0:
7 continue
8 else:
9 raise FlickerException

10 else:
11 cur_boxes = similar_boxes

Figure 3: The pseudo-code for the flickering assertion. For each frame, the assertion inspects recent
frames and fires if there are any “gaps” between frames, e.g., if the model identifies a car in frame i
and i - 2, but not i - 1.

1 counter = [0 for i in range(len(boxes))]
2 for i in range(len(boxes)):
3 for j in range(len(boxes)):
4 if i == j:
5 continue
6 if nearly_contains(box[i], box[j]):
7 counter[i] += 1
8 if counter[i] >= 2:
9 raise MultiBoxAssertion

Figure 4: The pseudo-code for the multibox assertion. If a box nearly contains at least two other
boxes, the assertion fires.

At runtime, one or more assertions are run over the output of the current frame, along with a short
history of outputs from previous frames. At runtime, model assertions can trigger one of several
actions. First, a monitoring system can record statistics which can subsequently be analyzed, e.g., to
detect model drift. Second, the deployment system can return control to a human operator if a model
assertion is triggered. Finally, the deployment system can store the data that caused assertions for
further processing, such as manual analysis or active learning.

Finally, data collected from when the assertions fired at runtime can be used as training data to
further improve the model. As model assertions are ideally high precision, the output of the model
is likely to be incorrect. Collecting instances of training data that are “hard” for models is known to
to be a viable strategy for improving model quality (Anonymous, 2019). Data that fails assertions
can be labeled in one of two ways. First, this data can be sent to human annotators as a form of active
learning. Second, if the model output can be corrected automatically, analysts can write corrective
rules that propose new labels for the data on as a form of weak supervision (Ratner et al., 2017a;
Varma & Ré, 2018).

3 Experiments

We evaluate model assertions on a real-world security camera to see 1) if model assertions can
effectively find errors and 2) if model assertions can improve model performance. We find that
simple model assertions can be written to be highly precise and can be used to significantly improve
model performance.

3.1 Experimental Configuration and Model Assertions

Dataset and model. We evaluate model assertions on the night-street video from Kang et al.
(2018). We use post processed Mask-RCNN labels from Kang et al. (2018) as ground truth, with
a different day for training and testing. The production model we debug and improve is SSD Liu
et al. (2016), a much faster object detection method than Mask R-CNN. Single-shot detectors are
widely used in practice Redmon & Farhadi (2017); Huang et al. (2017); Kang et al. (2017). SSD
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Assertion % of frames with incorrect behavior % of frames fixed correctly
Flickering 100% 90%
Multibox 100% N/A

Table 1: Assertions and the percentage of time that they correctly identify an incorrect behavior and
percentage of time correction rules correctly fix the output. The multibox assertion does not correct
the output.

executes 20× faster than Mask R-CNN, but produces more errors on our test video. Thus, we
evaluate whether we can find and reduce these errors using model assertions.

Assertions. We implemented two assertions: 1) to detect flickering in video (“flickering”) and 2)
to detect if a box of a car contains two other boxes of cars (“multibox”). An example of flickering
is shown in Figure 1 and pseudocode is shown in Figure 3. While methods have been proposed to
reduce flickering in video Han et al. (2016); Zhu et al. (2017), model assertions can use model asser-
tions both for monitoring runtime behavior and for active learning or weak supervision to improve
SSD’s performance. We also wrote a corrective rule for flickering that automatically fills in labels
based on the nearby boxes in adjacent frames for our weak supervision experiments. An example of
multibox is shown in Figure 2; the pseudo-code is shown in Figure 4. We were unable to construct
a high-precision corrective rule for the multibox assertion.

3.2 Model Assertions can be Precise

We ran inference using SSD over nine hours of the night-street video and then ran the flick-
ering and multibox model assertions over the output to see if assertions can effectively find errors.
For each assertion, we manually annotated 50 random frames where the assertion fired to check
whether the assertion actually caught a real mistake with respect to human-annotated ground truth,
as opposed to Mask R-CNN. For flickering, we also verified whether the correction rule produced a
reasonable label. The results are shown in Table 1, the assertion correctly identifies an issue 100%
of the time and, in the case of flickering, the correction rule correctly fixes the output 90% of the
time. Thus, we see that simple assertions both can be highly precise and can effectively correct
model output.

3.3 Model Assertions can Improve Model Performance

To see if using model assertions as a form of active learning or weak supervision can improve model
performance, we collect frames where each assertion fired and random frame to use as training data,
from 9 hours of video. We finetuned the following variants of SSD, pretrained on MS-COCO, with
2000 frames each:

• SSD trained with 1,000 frames that triggered the flickering assertion and 1,000 random
frames, labeled via weak supervision.

• SSD trained with 2,000 random frames labeled via active learning, as a baseline.
• SSD trained with 1,000 frames that triggered the flickering assertion and 1,000 random

frames, labeled via active learning.
• SSD trained with 600 frames that triggered the multibox assertion and 1,400 random

frames, labeled via active learning.
• SSD trained with 1,400 frames that triggered the flickering assertion and 600 frames that

triggered the multibox assertion, labeled via active learning.
As we were unable to find a correction rule for the multibox assertion, we only ran weak supervision
for the flickering assertion. We compare to an SSD pretrained on MS-COCO. In each experiment,
we used a learning rate of 5 × 10−5 (active learning) or 10−5 (weak supervision) and ran training
for 6 epochs. We averaged two runs of retraining.

Our accuracy metrics include mean average precision (mAP), a standard metric used in object de-
tection Lin et al. (2014), and recall at ˜80% precision (which is what SSD achieves at a reasonable
confidence threshold relative to Mask R-CNN). We additionally count the number of times flicker-
ing occurred before and after training. We used an hour of video footage for testing. The testing
video was from a different day than the training video.
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Model mAP Recall at ˜80% precision
MS-COCO pretrained SSD 33.2 36.4%
SSD, weak supervision (flickering) 49.1 62.2%
SSD, active learning (random) 66.0 82.4%
SSD, active learning (multibox) 67.2 85.9%
SSD, active learning (flickering) 68.9 85.9%
SSD, active learning (flickering + multibox) 70.5 87.7%

Table 2: Performance of the standard SSD, SSD trained with weak supervision for flickering, and
SSD trained with active learning. The accuracy is computed over unseen data. As shown, both weak
supervision and active learning improve SSD. Assertion-based active learning outperforms labeling
random frames at a fixed labeling budget.

Model Data % of labels with flickering Reduction
Regular SSD Seen 14.3% 1×
SSD, weak supervision Seen 3.8% 3.8×
SSD, random sampling Seen 2.5% 5.7×
SSD, active learning Seen 1.8% 7.8×
Regular SSD Unseen 16.3% 1×
SSD, weak supervision Unseen 3.4% 4.8×
SSD, random sampling Unseen 2.5% 6.4×
SSD, active learning Unseen 2.2% 7.5×

Table 3: Number of frames where flickering occurred for the standard SSD, SSD trained with weak
supervision, and SSD trained with active learning (using both assertions), both on the data that
generated the supervision and unseen data. As shown, the number of frames with flickering is
reduced after training and assertion-based active learning outperform random labeling.

As shown in Table 2, we see that both weak supervision and active learning improve the MS-COCO
pretrained SSD’s performance. As expected, active learning improves the model significantly (as it
uses ground truth labels) and outperforms sampling random frames at a fixed labeling budget of 2000
frames. We additionally show the number of frames flickering occurred before and after training in
Table 3. As shown, the number of frames where flickering occurred is significantly reduced after
training with both weak supervision and active learning.

While the gap between weak supervision and active learning may seem surprising, the correction
rule for flickering is 90% precise on only the boxes that are flagged. The frames that are used in
weak supervision might contain other errors that are not detected by model assertions.

4 Conclusion

As machine learning models continue to be deployed in mission-critical settings, the need for prin-
cipled approaches of debugging machine learning models only increases. In this work, we propose
adapting program assertions to machine learning models, through the concept of model assertions.
We implement a prototype to deploy model assertions and apply it to video analytics. We demon-
strate that simple assertions can catch many errors and that they can be used as a form of weak
supervision and active learning to significantly improve model accuracy. Moving forward, we plan
to evaluate model assertions in more domains. Additionally, we hope to see other practices from
software engineering (e.g., large-scale fuzzing) adapted to machine learning applications.
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A Related Work

Verified Machine Learning. We target complex, real-world scenarios, where complete specifi-
cations may not be possible. In limited scenarios, there has been an increasing line of work for
verifying machine learning models. For example, Reluplex (Katz et al., 2017) can verify that ex-
tremely small networks will make correct control decisions given a fixed set of inputs and other work
has shown that similarly small networks can be verified against minimal perturbations of a fixed set
of input images (Raghunathan et al., 2018). However, these verifications are done for very limited
scenarios (e.g., small L∞ perturbations of images) and not the complex, real-world scenarios we
target.
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Structured Prediction, Inductive Bias. Several ML methods encode structure or inductive bi-
ases into the training procedure or models themselves (BakIr et al., 2007; Haussler, 1988). For
example, structured prediction attempts to predict output with additional constraints (e.g., object
detection) (BakIr et al., 2007). While promising, designing algorithms and models with specific
inductive biases can be challenging for non-experts. Additionally, these methods generally do not
contain runtime checks for aberrant behavior.

Software Debugging. Writing correct software and verifying the correctness of software has a long
history, with many proposals from the research community. We hope that many such practices are
adopted in deploying machine learning models; we focus on assertions in this work (Goldstine et al.,
1947; Turing, 1989). Assertions have been shown to reduce the prevalence of bugs, when deployed
correctly (Kudrjavets et al., 2006; Mahmood et al., 1984). There are many other such methods, such
as formal verification (Klein et al., 2009; Leroy, 2009; Keller, 1976), methods of conducting large-
scale testing (e.g., fuzzing) (Takanen et al., 2008; Godefroid et al., 2012), and symbolic execution
to trigger assertions (King, 1976; Cadar et al., 2008).

Weak Supervision, Semi-supervised Learning. The goal of weak supervision is to leverage
higher-level and/or noisier input from human experts to improve the quality of models (Varma et al.,
2016; Ratner et al., 2017a; Varma & Ré, 2018). In semi-supervised learning, structural assumptions
over the data are used to leverage unlabeled data (Zhu, 2011). These methods are generally used
to expand the training data. For example, human experts can write labeling functions to weakly
annotate data, which can be used as training data to improve the performance of models (Varma
& Ré, 2018; Ratner et al., 2017b). Flipper (Varma et al., 2017) explores debugging the quality of
automatically generated training data. However, these methods generally do not contain runtime
checks and, to the best of our knowledge, have not been used as a form of active learning.
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