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Introduction and Related Work. Among all physiolog-
ical signals, Electrocardiograms (ECG) has seen some of
the largest expansion in both medical and recreational
applications. In parallel with the traditional 12 lead ECG,
we are witnessing the rise of single-lead versions embed-
ded in medical devices and wearable products. Devices
such as the injectable Medtronic Ling monitor and the
iRhythm Ziopatch wearable monitor are widely used in
the diagnosis of cardiac arrhythmia, while smart watches
marketed directly to consumers such as the Apple Watch
Series 4 now feature a single lead ECG. Altogether, sin-
gle lead ECG is expected to be used by tens of millions of
Americans by the end of 2019 [7].

Meaningful use of the deluge of data being created
requires automated methods: Increasingly more ap-
proaches in modeling clinical data, including ECG, rely
on deep learning. Examples include cheXnet for chest
x-rays [11], deep survival analysis for coronary artery
disease [12], and DeepPath for pathology [2]. Similar
methods, built into consumer devices and apps, have also
recently been cleared by the Food and Drug Administra-
tion. [9]

Deep learning classifiers have been shown to be brittle
to adversarial examples [4; 13], including in medical-
related tasks [10; 3]. However, naively attacking ECG
deep learning classifiers with traditional methods such as
Projected Gradient Descent (PGD) [8] creates examples
presenting square waves artifacts that are not physiolog-
ically plausible. To remedy this, we develop a method to
construct smoothed adversarial examples. The methods
successfully creates false negatives: examples of symp-
tomatic ECG indistinguishable to a human eye that get
classified as normal by the model (Fig 1).

Methods. We construct adversarial examples for state
of art deep learning methods in 2017 PhysioNet/CinC
Challenge [ 1] that classify a single short ECG lead record-
ings to four types: normal sinus rhythm (Normal), atrial
fibrillation (AF), an alternative rhythm (Other), or is too
noisy to be classified (Noise). The challenge training set
contains 8,528 single-lead ECG recordings lasting from
9s to about 60s. We split the training set randomly into a
new training set (90%) and new test set (10%). We train
the 13-layer convolutional network from [5] on the train-
ing set and get accuracy 0.88 and F1 score 0.87 of the
three majority classes (Normal, AF and Other rhythm)
on the test set which is comparable to the state of art
ECG classification [5].

We create adversarial examples with the test set. How-
ever, directly applying PGD to ECG classification will cre-
ate very non-smooth signals that can be easily distin-
guished from real ECG by the human eye. We propose
a method to train a smooth perturbation (TSP). We take
the adversarial perturbation as the parameter 6 and add

it to the clean examples after convolving with a number
of Gaussian kernels G(s, o). The resulting adversarial ex-
ample could be written as a function of 6:

Xaay(0) = x + %Z 0 ® G(s[i], ali]).

Then we use PGD to maximize the loss function L with
respect to 6 to get adversarial example for a given input-
label pair (x, y):

91'/ = Clipo,s{ei/_l ta- Slgn(veL(f (xadv(ei/_l)’ y)))}

Figure 1: Adversarial examples AF to Normal.
Smooth Perturbation
Combined tracing
Prediction: Normal
100% confidence

Results. We asked a physician with EGC experience to
rate 250 pairs of real/adversarial TSP examples result-
ing in misclassification. They rated 243/250 pairs as
traces from the same class, bounding the accuracy of the
deep learning network to at most 7/250 = 0.028. When
asked to detect which trace is computer-generated over
1004100 pairs of PGD and TSP of real/adversarial coun-
terparts, they did so correctly in 95% of the cases for
PGD, but only 59% of the cases for TSP

Original tracing
Prediction: AF
100% confidence

+

Discussion. We demonstrate here how adversarial ex-
amples may pose a real challenge for machine learn-
ing systems designed for ECG applications. Our find-
ings are in line with recently published examples in other
medical fields [3]. This misclassification susceptibil-
ity is important, since it may expose Al based systems
to error induced by unexpected perturbations in signal,
which could be environmental and unexpected. More-
over, it may enable malicious actors to change outcomes
of clinical studies and insurance claims. This is espe-
cially relevant with the increased reliance on Real World
Data (RWD) for health-care related decision making [6].
For example, in the near future raw ECG recordings
in cardiovascular-related trials may come directly from
study participants’ smart watches as Patient Generated
Health Data (PGHD). As this type of interference may be
particularly difficult to detect, given the indistinguish-
able change in ECG pattern, it is imperative to ensure
a trusted chain of custody in both clinical use and RWD
acquisition in order to prevent malicious actors to imper-
ceptibly change the data to affect the outcome.
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