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Introduction Deep learning (DL) has suggested many effective solutions to complex problems.
However, the complexity of model makes it extremely difficulty to debug when DL does not work
or learn properly. Deep neural networks are black box models, which do not allow interpreting what
they have learned. Therefore, researchers or developers need to spend a lot of time on running a lot of
different experiments to fix an error. In deep reinforcement learning (DRL), we frequently observe
that a well-working algorithm in one environment fails to learn in another similar environment (i.e.,
Atari results in Mnih et al. (2015); Van Hasselt et al. (2016)). Here, we define debugging in machine
learning as efforts to gaining better performing models in a fuller sense of the term. Narrowing
down to debugging DRL, we can focus on identifying the problem of erroneous learning progress to
be able to further improve it as we use print statements for debugging in other programming.

In this context, understanding or interpreting how DL or DRL learns can help debugging. For in-
stance, we can use interpretable DL for supervised learning problems (Yosinski et al., 2015; Olah
et al., 2018; Li et al., 2017; Tulio Ribeiro et al., 2016; Montavon et al., 2017) can suggest good
debugging options. In DRL problems, t-SNE and saliency maps (Zahavy et al., 2016; Greydanus
et al., 2017) can provide visualization of how an agent learns. However, they only provide infor-
mation about the converged model, which is not enough for debugging. DRL-Monitor (Dao et al.,
2018) combines DRL with a statistical method to collect evidences from learning process of a DRL
agent. It memorizes important moments during DRL training and provides Bayesian inferences
for further analysis. Attached to any state-of-the-art DRL algorithms, the DRL-Monitor can help
debugging at any stage of the training process.

Identifying Errors with DRL-Monitor Fig. 1 shows the overall structure of using DRL-Monitor
to debug DRL algorithms. In reinforcement learning, an agent interacts with an environment to
collect transition experiences (state, action, reward, next state). The agent learns from the experi-
ences when applying DRL algorithms. DRL-Monitor observes the learning process, utilizes sparse
Bayesian reinforcement learning framework proposed by Lee (2017) to re-estimate DRL with sim-
ilar input and output of DRL. A quality check is performed to ensure the estimation of the monitor
is very closed to DRL. If the monitor passes the quality check, the method will extract evidences
from the monitor to perform analysis and identify errors (we call this an evidence). The detail of
DRL-Monitor is described in Appendix A.

Each evidence includes a transition experience with a weight distribution to indicate how strong
the evidence is. The weight distribution tells how good or bad a transition experience is. These
evidences show the agent’s behavior through learning process. If the agent has bad behaviors, DRL
algorithm can be enforced to learn with the evidence to have better agent’s behavior and perform
better in the environment. A case study that utilizes DRL-Monitor as a debugger to identify bad
behaviors and to analyze them is provided in Appendix B.

Figure 1: DRL-Monitor debugging cycle to improve learning performance. DRL agent interacts with envi-
ronment to learn a policy while the monitor supervise the learning and collect evidences to identify errors and
improve the learning performance of DRL algorithms.
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Figure 2: Deep reinforcement learning monitor framework (Dao et al., 2018)

A DRL-MONITOR

Fig. 2 shows the overall structure of Deep Reinforcement Learning Monitor. DRL-Monitor is con-
sisted of two core modules: DRL module and monitor module. In DRL-Monitor, given a reinforce-
ment learning task, the DRL module is the main workhorse for learning the task. The DRL algo-
rithms take input and output actions with corresponding value such as state value (V ) or state-action
value (Q). The value is a numerical number represents how good of a given state or state-action
input is. In order to reach state-of-the-art performance, DRL utilizes deep neural networks to ap-
proximate action and value given state input. An input is going through a series of layers from the
neural networks to predict a value. The neural networks is updated by minimizing the following loss
function:

L = (r + γmax
a′

Q′(s′, a′)−Q(s, a))2

To be able to systematically debug DRL with evidence, the monitor extracts a perception, an action,
and an estimated output value for a given trajectory input. Perception is defined as what the neural
networks interpret a state input and is a vector outputted from a neural network layer, which is before
value output layer. The information extracted from DRL module is going through a sparse Bayesian
reinforcement learning (SBRL) proposed by Lee (2017), which is built based on Sparse Bayesian
Learning Tipping (2001). Two radial basis function kernels are applied for the perception and action
to measure similarities between them:

φi(p,a) = kp(p,pi)ka(a,ai).

The SBRL assumes the target Q is a weighted sum of the feature vectors Q̂ = Φw with some noise
ε such that:

Q = Q̂ + ε

where ε is zero-mean Gaussian noise with variance σ2. α is a set of hyper-parameters controlling the
strength of the prior over the corresponding weights and is set to be infinity except for one starting
as:

αi =
||φi||2

||φ>i Q||2/||φi||2 − σ2
.

The posterior parameter distribution p(w|Q, α, σ2 is the Gaussian distribution N (µ,Σ) with A =
αI:

Σ = (A + σ−2Φ>Φ) and µ = σ−2ΣΦ>Q.
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The monitor re-estimates the DRL and remembers a sparse set of transition experiences (state, ac-
tion, rewards, next state) as well as corresponding mean and variance information for further analy-
sis. The monitor evaluates quality of the monitor estimation by comparing monitor predicted value
with DRL predicted value with a heuristic method:∑

(Q̂i −Qi)
2 < τ

∑
(Q̄−Qi)

2 where τ ∈ [0, 1].

If the monitor produces a good quality of estimation, the sparse set of information will be move
to a storage to be captured and considered as evidence. The sparse set of information is used to
determine if there is a bug in the learning process.

B CASE STUDY: MS. PACMAN

We applied DRL-Monitor to observe a Double Deep Q-Network Van Hasselt et al. (2016) agent’s
behavior. The behaviors at 300K, 1.2M, and 2.4M trained through 2.4M simulation steps is pre-
sented in Fig. 3. At the beginning, the agent identifies that standing is not a good action indicated by
a red circle. In fact, the agent should always move in MsPacman game environment to successfully
survive. In the middle of the learning process (before the convergent) at 1.2M simulation steps, the
agent realizes an important of food. Therefore, the agent develops a behavior that favors moving
toward the food. Until this learning stage, the agent is developing a good behavior to interact with
MsPacman game environment. However, at 2.4M simulation steps, the agent is still favor moving
toward the food even though there is a ghost in the way. This bad behavior is caught with DRL-
Monitor and telling the learning system that there is a bias behavior toward food collection of the
agent that needs to be fixed.

Figure 3: DRL-Monitor collects the best three most effective evidence of MsPacman behavior at 300K, 1.2M,
and 2.4M simulation steps. The arrow shows action direction of MsPacman, the circle show agent choose
standing action. Green and red correspondingly indicate positive and negative behavior of the agent.
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