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ABSTRACT

Explaining the behavior of black box machine learning through human inter-
pretable rules is an important research area. Several recent works have focused
on explaining model behavior locally i.e. for specific predictions. However, it
is also important to understand the behavior of models globally. In this work,
we present a novel approach that captures model behavior globally in an accu-
rate, succinct, and human understandable manner. It uses local model explanation
methods to extract conditions important for specific instances followed by an evo-
lutionary algorithm that optimizes an information theory based fitness measure
to construct global rules. We show how our approach can be used in different
domains to extract patterns in a dataset through a trained model. Our approach
outperforms existing approaches across several publicly available data sets.

1 INTRODUCTION

Black box models are increasingly used to assist in crucial decisions (Louzada et al., 2016; Corbett-
Davies et al., 2017). It is therefore important to interpret the decisions taken by them (Lipton, 2018;
Ribeiro et al., 2016a; Doshi-Velez, 2017). We describe a model-agnostic approach called MAGIX
or Model Agnostic Globally Interpretable Explanations to interpret classification models as if-then
rules that explain model behavior globally. These rules provide useful insights into both the data
and the model.

2 RELATED WORK

There are several approaches that explain model behavior at a local level, i.e. in a limited region
of the input space (Lundberg & Lee, 2016; 2017; Shrikumar et al., 2017). LIME (Ribeiro et al.,
2016b) explains the classification of a particular instance by a trained model. It has been extended to
Anchors (Ribeiro et al., 2018) that outputs rules that explain only the reasons for a specific decision.
Local approaches can be used to derive rules Rk that correctly explain a small region of the input
space. However, since each Rk covers a small fraction of the input space, the number of rules that
explain model behavior globally is large. We show this in Section 4.

Bastani et al. (2017) propose a surrogate model approach where a decision tree is trained on the
predictions made by the model. However, rules extracted from a decision tree are in the form of
decision lists. Lakkaraju et al. (2016) show that decision sets with independent rules are more
interpretable than decision lists. They optimize an objective function that balances accuracy and
interpretability of the ruleset. The candidate set of rules is derived using association rule mining.
In contrast, our approach builds upon local model interpretation algorithms using them to mine
conditions and employing an evolutionary algorithm to build the global ruleset out of these local
conditions. We show in Section 4 that our approach outperforms existing approaches.

∗All authors contributed equally.
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Table 1: Contingency table used to compute Fitness of rule Ri

Rule/Class yRi NOT yRi

Ri n11 = Number of instances in
cover(Ri) with class yRi

n12 = Number of instances in cover(Ri)
with class different from yRi

NOT Ri n21 = Number of instances with class
yRi

but not covered by Ri

n22 = Number of instances not covered by
Ri and with class different from yRi

3 APPROACH

Definitions and notations frequently used hereafter are as follows:

1. Dataset D is a set of xi and class yxi
. The trained model is a function M : X → Y that

maps input xi to class yj . F1 to Fm are the features used by the model.

2. Condition Ci is defined by a feature FCi
and a value vCi

. It represents the predicate FCi
=

vCi
. A condition Ci is said to hold for an instance xj if xj [FCi

] is equal to vCi
.

3. Rule Rk is a conjunction of conditions from C1 to Cl with a class yRk
. Rk covers xj if each

condition in Rk holds for xj . Rk correctly covers xj if Rk covers xj and yRk
= M(xj).

4. coverage(Rk) is the fraction of instances that are covered by Rk.

5. precision(Rk) is the fraction of instances in coverage(Rk) that are correctly covered by Rk.

6. Interpretation I of a machine learning model M is a set of rules R1, R2, ..., Rn. I should
have the characteristics of Interpretability, Accuracy and Fidelity (Guidotti et al., 2018).

Our algorithm works in two phases. In the first, we use LIME (Ribeiro et al., 2016b) to find condi-
tions that are important to explain the classification of a specific instance. This is repeated until we
find at least one condition for each instance in the training set. At the end of this phase, we have a
set of locally important conditions.

In the second phase, the locally important conditions are input to a genetic algorithm (Whitley, 1994)
to evolve rules at the global level. The algorithm explores combinations of conditions, guided by a
fitness function, to build a global, accurate and interpretable ruleset. It is run independently for each
class to ensure that model behavior is explained for all classes. A candidate rule is encoded as a bit
string with each bit marking the presence or absence of one condition. The desiderata for a rule are
precision, coverage and rule length, as defined at the start of this section. In order to capture these,
we introduce a fitness measure based on mutual information.

The Mutual Information between two variables quantifies their dependence. Within the context of
learning a rule, the two variables are the model and the rule. We want to maximize the information
that each rule provides us about the model. For a rule Ri that has class label yRi

, we construct a
contingency table as shown in Table 1. Mutual Information (MI) for a rule Ri is:

MI =
1

N

2∑
a,b=1

nablog(
nab ×N

ra × cb
) (1)

where, N is sum of all values, ra is summation of values in row a, cb is summation of values in
column b. The fitness measure for a rule is as follows:

Fitness(Ri) =

{
MI when n11 ≥

r1 × c1
N

−1×MI otherwise

A high value of MI means that the rule Ri accurately captures the model behavior for class yRi
.

However, a high MI could also mean a high negative correlation between the rule and predicted
class. To penalize this, we negate the value of MI when the value in cell n11 is less than the expected
value. The genetic algorithm is run for 600 generations. All the individuals of the final generation
having positive fitness are selected as rules that explain model behavior.

2



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

4 RESULTS

We demonstrate our approach on publicly available datasets that have been summarized in Appendix
A. Each dataset was split into a training, validation and scoring set. A Random Forest Model was
trained on the training set. Rules were learned on the predictions made by this model using MAGIX.
Figure 1 shows some of these rules. They give useful insights into these models.

Figure 1: Illustrative Rules learned using MAGIX

Dataset Approach SC SP

Adult
MAGIX 100.00 88.95
Anchors 62.53 82.36
SLS 99.81 76.08

Recidivism
MAGIX 99.40 83.49
Anchors 28.23 69.86
SLS 99.98 62.66

Table 2: Set-Coverage and Set-Precision with
Simulated Users on rulesets of 20 rules

For instance, we find that the model trained on the Recidivism dataset had a racial bias. To predict
whether a convict will re-offend, race was a distinguishing factor. The condition ”Race = White”
was a part of a large number of rules that predict a low recidivism score, whereas the condition
”Race = Black” was present in most rules that predicted a high score.

On the IMDB Movie Reviews Dataset, we interpreted a pre-trained LSTM Network. Both the code
and the model is open-source (Deshpande, Adit). We learn rules of the form, If [W1, W2, ..., Wn]
Then Class K where [W1, W2, ..., Wn] signifies a presence of all Wi in the review. A few rules
learned on the LSTM Model are listed in Figure 1.

4.1 EXPERIMENTAL SETUP

We compare the performance of our approach with Anchors (Ribeiro et al., 2018) and Smooth Local
Search (SLS) (Lakkaraju et al., 2016) on the Adult and Recidivism datasets. The training set was
used to train a random forest model. Rules explaining model behavior were learned using different
approaches. For generating rules using Anchors, we repeatedly generate anchors on instances such
that all the instances are correctly covered by at least one anchor. Apriori algorithm (Agrawal et al.,
1996) is used for generating candidate rules on which a selection is performed using SLS (Lakkaraju
et al., 2016).

To build a global ruleset we use a variant of the submodular pick technique described in LIME
(Ribeiro et al., 2016b). The rules obtained are sorted in the order of decreasing marginal coverage
gain. Global rulesets limited by two specifications are formed for each of the approaches being
compared. The size of the rule sets is limited by either the number of rules or the fraction of
instances covered by the rule set. We call these Cognitive Budget and Global Coverage respectively.

4.2 SIMULATED USER STUDY

This study was performed on validation sets from Adult and Recidivism datasets (Experiments
section, Ribeiro et al. (2018)). An Interpretation of 20 rules is learned using each approach. Set-
Coverage and Set-Precision are computed for each rule set. The Set-Coverage (SC) of an interpre-
tation I , is the fraction of instances that are covered by at least one rule in I . The Set-Precision (SP)
of an interpretation I , is the fraction of instances from the set of covered instances for which the
model and the interpretation agree on the class label. For instances covered by multiple rules, the
highest precision rule is selected and associated class assigned.

Table 2 shows the results. It shows that while both MAGIX and SLS generate interpretations that
cover the entire set of instances, the rules generated by MAGIX correctly explain model behavior on
a larger fraction of the data. The rules generated by Anchors cover a smaller fraction of instances.

To evaluate the fidelity of different approaches, we define the Set-Score metric. The Set-Score of an
interpretation I , is the fraction of all instances that are labelled with the correct class using I . The
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(a) Adult Dataset (b) Recidivism Dataset

Figure 2: Set-Score v/s Number of Rules for various approaches

Table 3: Comparing Global Rulesets

Ruleset with 20 Rules Ruleset with 90% Coverage

Dataset Approach AMB UNC LEN NUM AMB UNC LEN NUM

Adult
MAGIX 0.27 0.00 1.95 20 0.25 0.00 1.00 2
Anchors 0.08 0.38 3.25 20 0.33 0.04 5.40 337

SLS 0.97 0.00 1.91 20 0.85 0.01 1.00 2

Recidiv.
MAGIX 0.10 0.00 1.95 20 0.00 0.05 1.00 2
Anchors 0.03 0.72 4.75 20 0.17 0.11 8.7 1101

SLS 0.99 0.00 1.59 20 0.76 0.01 1.00 2

correct class is the class that is predicted by the trained model. If an instance is covered by several
conflicting rules, the highest precision rule is retained for that instance.

Figure 2 plots the value of Set-Score vs the size of the rule set for both data sets. It shows that
the rules learned using MAGIX are better at explaining model behavior than those from SLS or
Anchors.

4.3 COMPARING GLOBAL RULE SETS

In this section, we show comparisons along 4 metrics introduced in work by Lakkaraju et al. (2016).
Table 3 records these comparisons.

1. Fraction Ambiguous (AMB): Fraction of instances in the data set that are covered by mul-
tiple conflicting rules.

2. Fraction Uncovered (UNC): Fraction of instances in the data set that are not covered by
any of the rules in the ruleset.

3. Rule Length (LEN): Average number of conditions in a rule from the ruleset.

4. Number of Rules (NUM): Number of rules in the ruleset.

As we can see from the table, Anchors requires a very high number of rules to cover 90% of the
data set. Further, the average rule learned by Anchors is also longer. MAGIX instead explains
model behavior on 90% of the instances with just 2 rules. For SLS, the value of ambiguity is quite
high. Such rules would convey confusing model behavior and compromise interpretability. The
interpretations produced by MAGIX are concise, unambiguous and explain model behavior on a
large part of the dataset.
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5 CONCLUSION

We have presented a novel approach to learn rules that explain the behavior of a black box model
globally. Our approach optimizes the rules on multiple dimensions of accuracy, coverage and hu-
man interpretability. This claim is supported with experiments. By interpreting models trained on
large data sets, we can extract patterns inherent in the original data. This gives us a useful way to
understand large and complex data sets. Moreover, rules obtained using MAGIX provide insights
into model behavior and can be used to identify biases. Our approach is scalable and has been im-
plemented and made available to marketers as part of a leading digital marketing suite of products.
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A
DATASETS USED

Dataset Rows Features Classes

Adult
Dataset

32,561 Age, Workclass, Education, Marital Status, Occupation,
Relationship, Race, Sex, Capital Gain, Capital Loss,
Weekly Hours, Country

<=$50K,
>$50K

Recidivism
Dataset

9,549 No. of priors, Age, Gender, Race, Marital Status,
Severity of crime, Years of schooling, Alcoholic, Junky,
Prison Violations, Months Served

Low-risk,
High-risk

IMDB
Movie
Reviews

25,000 Movie Review in English Positive,
Negative

Table 4: Dataset Description
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