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VISUALIZATIONS OF DECISION REGIONS IN THE
PRESENCE OF ADVERSARIAL EXAMPLES

Grzegorz Swirszcz, Brendan O’Donoghue & Pushmeet Kohli

ABSTRACT

From a geometric standpoint, training a classification model is equivalent to defin-
ing a partition of the feature space into a union of subsets, where each subset cor-
responds to a particular decision region. The quality of the model is dependent
on the geometry of such a partition being consistent with the desired properties
of the model. Presenting those properties in a fashion that can be studied and un-
derstood by a human presents a large challenge, due to the high dimensionality of
the objects studied. The goal of this paper is to present visualizations showing the
shape of decision regions with a focus on adversarial examples, and to highlight
and discuss the challenges of creating a good, scientifically helpful visualization.

1 INTRODUCTION

The importance of having tools for understanding and debugging machine learning models is be-
coming critical as models are deployed into real-world situations. In this paper we focus on visu-
alization, the significance of which is by now well agreed upon by machine learning practitioners
and theoreticians alike. The goals of this paper are twofold. Firstly, we present a methodology for
visualizing the decision regions of models, with a special focus on adversarial directions in the input
space (i.e., those directions that most rapidly change the class label (Szegedy et al.| 2013} |Goodfel-
low et al., 2014} [Uesato et al.,2018))) and to highlight and discuss the challenges of creating a good,
scientifically helpful visualization. Secondly, we present some of our findings on standard models
trained on an image classification task, using our methodology. For the readers not familiar with the
topic of adversarial examples a brief introduction is included in the Appendix

2 METHODOLOGY

In many machine learning tasks the training data can be represented as a collection of points in
some euclidean space R?, which is often very high-dimensional. In this paper we focus on image
classification, and in particular on the CIFAR-10 and MNIST image datasets. In each case we
normalize the values of each pixel coordinate to lie in the [0, 1] interval. Thus, in case of CIFAR-
10, each pixel is represented as a 3-D vector in [0, 1], and the whole image can be represented
as a 32 x 32 x 3 = 3072 dimensional unit hypercube: [0,1]3°72. Similarly, the MNIST dataset
can be treated as a [0, 1]7®* unit hypercube. It goes without saying that visualizing such a space
is very difficult for a human, though being able to visualize how the model partitions the space
would be extremely useful for understanding the model behaviour, debugging bad performance, and
tackling adversarial input examples. In this vein, a major challenge for the visualization community
is to find meaningful ways of representing this very high-dimensional space in such a way that a
human can understand it, without losing too much useful information. In this paper we propose
such a visualization scheme and use it to demonstrate some interesting properties of modern neural
networks trained on the above mentioned image classification tasks.

Throughout the rest of the paper we shall denote the hypercube {x € R? : 0 < |z;| < 1 for i =
1,...,d} by H for brevity.

2.1 “THE ART OF SLICING”

In this paper we adopt the approach of studying intersections of the input data hypercube H with
2-dimensional planes. We refer to these intersections as ‘slices’. When we visulize a slice each
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point will be color-coded according to the label assigned by the classification model being studied.
One immediate practical challenge is determining the size of the slice presented, as well as the
impossibility of representing an infinite plane in a picture. This motivates the following definitions.

Definition 1. Let £ be a 2-dimensional plane in R? satisfying L N H # (. Let v be a vector
contained in L. Then a slice of H determined by L and vector v is the smallest rectangle R such
that LN H C R and one side of R is parallel to v.

Definition 2. A feasible point in a slice S is any point belonging to the intersection S N H.

2.2 TECHNICAL ASPECTS OF THE METHODOLOGY

The main technical challenges for our visualization procedure were finding the slice size, grid size
and identifying which gridpoints were feasible points. Also, given the fact that the model has to be
evaluated at thousands of points, performance was another issue. We solved these issues as follows:

For identifying the slice size and feasible gridpoints we used the flood fill algorithm 2016).
A point from the slice known to be feasible was selected as the seed of the algorithm, and in each
round the grid neighbors of points already added which are also feasible are added, until no more
additions are possible. Since the feasible set is convex this approach is guaranteed to select all points
in the correct slice eventually.

The performance of the algorithm was improved using batching the candidate points (batch size 64
turned out to be optimal for the used hardware) and standard HPC tricks like memoization.

The tool we created allows also for extra features to be visualized, like probabilities at the points of
interests and graphs of their values - see Figure[7]in the Appendix.
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Figure 1: Example of slices. Left - a slice of a CIFAR-10 image space. Four different regions
regions corresponding to “airplane”, “bird”, “deer” and “frog” are visible. Right - a slice of an
MNIST image space

2.3 DECISION REGIONS

Every classification model is a mapping M : H — L, where L is a set of n labels. In case of
CIFAR-10, the set L = {airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck},
while in case of MNIST L = {zero, one, two, three, four, five, six, seven, eight, nine}. The deci-
sion regions are subsets H; C H defined as H; = M~1(l;), I; € L for i = 1,...,n. In order to
visualize them, we assign to each label a color from a fixed color palette - see Figure[2.2]

According to definition (T)) a slice is a rectangle. Nevertheless, except for a rare cases, an intersection
of a 2D-plane and a hypercube is rarely a rectangle. Thus, in almost every slice, some points would
not correspond to any point in the image space. We color those points gray.

The intersection of a plane and a hypercube is always a convex polygon, but as a dimension grows,
the maximum number of its vertices grows exponentially. Thus, when looking at the slices, the
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points of interest will often form a shape looking rounder and more symmetric than might be ex-
pected. Depending on the situation they can be very round and elongated, triangular (the typical
situation for MNIST) or rectangular - and anything in between. Visualizations of the sort similar to
the ones presented in this paper have appeared in the literature recently (Warde-Farley & Goodfel-|
2016; [Gong et al.,[2017)), however to our best knowledge, the prior work focuses only on small
neighbourhoods of the points of interest, rather than presenting “the full picture” - finding the proper
scale that would include all points of potential interest. Figure [ displays the differences between
‘church window plot’ approach and choosing the slice based on adversarial directions.

2.4 A “THIRD POINT DILEMMA”

A 2-dimensional plane is determined uniquely by a choice of 3 non-colinear points. Thus, we are
choosing our slices by specifying 3 datapoints from the space of the images. The problem of finding
the right slices is therefore equivalent to finding the right triples of input images. In practice it turns
out, that more often than not the choice of two of the points is obvious and natural. It is usually
the third point that is difficult to choose in the meaningful way. A prime example of such situation
would be when we have an adversarial perturbation of an image. Then the natural choice of the two
points is the original image and its adversarial perturbation, while the choice of the third point is
highly non-obvious. This is highlighted in the Figure 2 Two different choices of the third point
yield two very different landscapes. Another important example of the importance of the choice of
the third point is Figure [3] discussed in more detail in Section[3]

We experimented with several approaches. The ones yielding (in our opinion) the most informative
visualizations were:

e another adversarial perturbation of the original image obtained either by
— another type of attack
— another random seed of the attack
— attack on the same image, but with respect to a different model

e a uniformly gray image (geometric center of the hypercube)

e arandom image

e arandom perturbation of the original image of a pre-defined magnitude
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Figure 2: Local versus global perspective. Two slices along the same adversarial perturbation, a
”small” slice on the left, versus a “’large” slice on the right. Two different choices of the third point
lead to two very different images. Note that the pictures are not in the same scale - the left one is
strongly magnified.

3  OUR OBSERVATIONS AND FINDINGS

In this section we detail some of our empirical observations about the decision regions of models
trained on the CIFAR10 dataset, using our visualization methodology. For more details on the
models used, and the training procedure, please refer to the Appendix.

- Choosing a meaningful section (or a slice) of the data space is often not easy - see Fig-
ures [0 and [
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Figure 3: The left slice might give an impression, that the blue (bird) decision region is disconnected,
however a different choice of a third point reveals, it is not the case.

- Observed decision boundaries are less complicated than we initially suspected - decision
regions generally form large, regular, connected patches.

- Differences in model architectures are reflected in the final shapes of decision regions in a
way that is noticeable to the human eye when visualized using our scheme, this can be seen
in Figures and[9]in the Appendix.

- Cutting the space in an ‘adversarial’ direction lead to “small slices”; i.e., the adversarial
direction is in all observed cases transversal to the vector connecting the image to the center
of the hypercube - see for example Figure 2]

- Shapes of the decision boundaries change very rapidly throughout the entire training pro-
cess. Essentially, each minibatch update leads to very dramatic changes of observed deci-
sion region shapes within a fixed slice. The authors are working on a video showing the
animation of the traning process.

In [Fawzi et al (2018) it was shown that the decision regions of deep networks are topologically
arcwise-connected sets, which we have verified empirically. An illustration of that phenomenon
can be seen in Figure 3] The image on the left might give an incorrect impression that the two
images (bird #195 from the training set and bird #276 from the test set) belong to two disconnected
components of the decision region of the model. However, choosing a different slice containing
these two images reveals the true geometry of the decision set.
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SUPPLEMENTARY MATERIALS FOR “VISUALIZATIONS OF DECISION
BOUNDARIES”

A MODELS USED

The main model we used for our analysis on the CIFAR-10 dataset was a Wide ResNet (Zagoruyko
& Komodakis| 2016)) consisting of a 3 x 3 convolution layer, followed by three layers containing 28
ResNet blocks of width factor 10, followed by batch normalization (loffe & Szegedyl [2015) layer,
followed by a ReLU (Nair & Hinton, 2010)), and by a final linear layer projecting into the logits of the
CIFAR-10 classes. All models we experimented with here are variations on this architecture, namely
- the addition of adversarial training (Madry et al.,2017) and model ensembling (Grefenstette et al.,
2018)). For MNIST dataset we used a standard 3-layer CNN architecture.

B ADVERSARIAL PERTURBATIONS AND ADVERSARIAL TRAINING

Deep neural networks have demonstrated state-of-the-art performance in a wide range of application
domains (Krizhevsky et al.,|2012). However, researchers have discovered that deep networks are in
some sense ‘brittle’, in that small changes to their inputs can result in wildly different outputs (Huang
et al.|[2017; |Jia & Liang| 2017; Szegedy et al.;2013)). For instance, practically imperceptible (to hu-
man) modifications to images can result in misclassification of the image with high confidence. Not
only are networks susceptible to these ‘attacks’, but these attacks are also relatively easy to compute
using standard optimization techniques (Carlini & Wagner, [2017b} |(Goodfellow et al.,2014). These
changes are often referred to as adversarial perturbations, in the sense that an adversary could craft
a very small change to the input in order to create an undesirable outcome. This phenomenon is
not unique to image classification, nor to particular network architectures, nor to particular training
algorithms (Papernot et al., 20165 2017).

Adpversarial attacks can be broken into different categories depending on how much knowledge of the
underlying model the adversary has access to. In ‘white-box’ attacks the adversary has full access to
the model, and can perform both forward and backwards passes (though not change the weights or
logic of the network) (Carlini & Wagner, [2017a;|Goodfellow et al.,[2014). In the ‘black-box’ setting
the adversary has no access to the model, but perhaps knows the dataset that the model was trained
on (Papernot et al.,|2016; 2017). Despite several recent papers demonstrating new defences against
adversarial attacks (Akhtar & Mian, 2018} |Guo et al., 2017} [Liao et al.l 2017} Song et al.l 2017;
Tramer et al., 2018; [Warde-Farley & Goodfellow, 2016; [ Xie et al., 2017; |Yuan et al.,|2017), recent
papers have demonstrated that most of these new defences are still susceptible to attacks and largely
just obfuscate the gradients that the attacker can follow, and that non-gradient based attacks are still
effective (Uesato et al.,2018;|Athalye et al., [2018).

B.1 ADVERSARIAL ATTACKS AND ADVERSARIAL TRAINING IN MORE DETAIL

Here we lay out the basics of attacking a neural network by the generation of adversarial examples.
Denote an input to the network as 2 € R% with correct label § € M C N, and let mg : R4 — R
be the mapping performed by the neural network which is parameterized by § € RP. Let L :
Y x RYI - R denote the loss we are trying to minimize (e.g., the cross-entropy). When training a
neural network we seek to solve

minimize E(,,y)~p L(7, me(T)) 1)

over variable 0, where D is the data distribution. Given any fixed § we can generate (untargeted)
adversarial inputs by perturbing the input x so as to maximize the loss. We restrict ourselves to
small perturbations around a nominal input, and we denote by B this set of allowable inputs. For
example, if we restrict ourselves to small perturbations in ¢, norm around a nominal input 2™
then we could set B = {z | ||z — 2™°™| o < €} where € > 0 is the tolerance. A common approach
for generating adversarial examples is projected gradient descent (Carlini & Wagner, [2016), i.e., to
iteratively update the input x by

T = (& + 0V, L(y, mo(#))), @
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where typically 2° = x + ¢ for some noise €, 7 > 0 is a step-size parameter and II5 denotes the
Euclidean projection on B. We add noise to the initial point so that the network can’t memorize
the training dataset and mask or obfuscate the gradients at that point (Uesato et al., [2018; |Athalye
et al |2018)), in other words the added noise encourages generalization of adversarial robustness to
the test dataset. If instead of using the gradient we just use the sign of the gradient then this is the
fast-gradient-sign method (Goodfellow et al.,2014). Empirically speaking, for most networks just a
few steps of either of these procedures is sufficient to generate an Z that is close to z"°™ but has a
different label with high confidence.

B.1.1 ADVERSARIAL TRAINING

In this subsection we briefly explain the concept of adversarial training (Madry et all 2017). In
adversarial training we train a network to minimize a weighted sum of two losses (where the relative
weighting is a hyper-parameter). The first loss is the standard loss of the problem we are trying
to solve on the normal training data, e.g., the cross-entropy for a classification task. The second
loss is the same function as the first loss, except evaluated on adversarially generated data, where
typically the adversarial data is generated by attacking the network at that time-step. In other words
we replace the problem in eq. (I)) with

minimize E(gy)~p(L(7, mo(x)) + pL(§,me())) 3)

where p > 0 is the weighting parameter and Z is an adversarial example generated from x at model
parameters ¢ using, for example, the update in eq. (2). This problem is usually approximated by
sampling and minimizing the empirical expectation.

For the effect of adversarial training on the appearance of the decision regions of the model see
Figures [5and [6]
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Figure 4: Church window plots - slices through one random perturbation and one adversarial modi-
fication (upper 12), two random perturbations (middle 12), versus targeted slice (bottom)
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Figure 5: Decision boundaries of an adversarially trained model (see Section[B.1.1))
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Figure 6: Decision regions of an adversarially trained model (left) vs. non-adversarially trained
baseline (right).
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Figure 7: The displaying tool with extra features enabled. The values of probits and graphs of probits
along the lines connecting three points of interest are shown.
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Figure 10: The difference between “any” (left) and a “meaningful slice (right).
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Figure 11: Example of a slice of a CIFAR-10 image space. Four different regions regions corre-
sponding to "airplane”, ”bird”, ”deer” and “frog” are visible.
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