
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

STEP-WISE SENSITIVITY ANALYSIS:
IDENTIFYING PARTIALLY DISTRIBUTED REPRESEN-
TATIONS FOR INTERPRETABLE DEEP LEARNING

Botty Dimanov & Mateja Jamnik
Department of Computer Science and Technology
University of Cambridge
Cambridge, CB3 0FD, UK
{botty.dimanov,mateja.jamnik}@cl.cam.ac.uk

ABSTRACT

We introduce a novel framework for interpreting Deep Neural Networks (DNN)
classification decisions that constructs a dependency graph between the relevant
neurons across the network to enhance the understanding of the interactions be-
tween DNN’s internal features. For instance, class-specific dependency graphs
share subgraphs across 10 classes, which can cluster the classes into semantically
related groups. We propose to use these subgraphs to identify partially-distributed
representations. Further, a class-specific dependency graph can compress a sub-
optimal DNN in half into a binary classifier for that class. Our work enables the
building of more sophisticated techniques that are capable of translating black-
box DNNs into interpretable decision trees. Such capabilities would empower
DNN developers to address incorrect predictions through informed architectural
and design choices.

1 INTRODUCTION

Deep Neural Networks (DNNs) are difficult to interpret due to their highly complex non-linear and
interconnected nature. The lack of transparency is a threefold problem. First, it inhibits adoption,
especially in industries under heavy regulation and with a high cost of errors. Second, it prevents us
from utilising the insights gained from the models for further knowledge discovery. Third, it makes
debugging existing models difficult and hampers development progress. Interpretability is crucial to
DNN debugging since it can give an intuition of the circumstance under which a DNN might fail and
the reasons behind this potential failure, and it can also facilitate regression testing by illustrating
the effects of a debugging intervention.

DNN interpretability can be gained from a human-interpretable explanation of the reasons behind
the network’s choice of output (Ribeiro et al., 2016; Doshi-Velez & Kim, 2017). In a DNN the
basis for a decision is encoded in features either as one neuron – local representation; or as a set of
neurons – partially-distributed representation (PDR) (Li et al., 2016; Fong & Vedaldi, 2018).

The identification of PDRs and their interactions remains the main hindrance to end-to-end inter-
pretability systems (Olah et al., 2018). Once identified, PDRs enable us to give much finer-grained
explanations (e.g., an image is a shark because the network detected a sea, sharp teeth, a long fin,
etc.). In this paper, we introduce our novel technique, step-wise sensitivity analysis (SSA), which
produces statistical topological interpretability. That is, we analyse the network’s properties as a
directed graph over various inputs to produce a dependency graph between neurons across the lay-
ers. The dependency graph highlights the relationships between adjacent layers that are pertinent
to the decision, and how these relationships are formed in each layer and across all layers to form
a feature representation. Furthermore, the dependency graph is capable of distilling a DNN into
a class-specific classifier, which can be further interpreted in more detail or combined into a more
powerful ensemble model.
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2 RELATED WORK

Existing effort dedicated to DNN interpretability has three main limitations. First, current ap-
proaches overlook the partially distributed nature of DNNs and either assume purely local repre-
sentations (Erhan et al., 2009; Simonyan et al., 2013), or fully-distributed representations (the entire
layer) (Mahendran & Vedaldi, 2015). Second, they focus on the input-output relationship treating the
entire network either as a black-box function with an input, output and parameters (functional) (Si-
monyan et al., 2013; Zeiler & Fergus, 2014; Zintgraf et al., 2017; Shrikumar et al., 2017) or as
graph (topological) (Landecker et al., 2013; Bach et al., 2015; Montavon et al., 2017). Layer-wise-
relevance propagation (LRP) (Bach et al., 2015) and Deep Taylor Decomposition (Montavon et al.,
2017) compute a relevance (importance score) between neurons in a layer-by-layer fashion, which
can be plugged into our four-step process to redistribute the relevance only to a small number of rel-
evant neurons. Third, model-centric approaches (e.g., activation maximisation (Erhan et al., 2009)
and inversion (Mahendran & Vedaldi, 2015)) produce an explanation that can be generalised to ev-
ery data point. On the other hand, instance-specific methods (Erhan et al., 2009; Simonyan et al.,
2013; Bach et al., 2015) give details to reason about particular mistakes or edge-cases operate on the
level of a single instance. Our approach aggregates instance-specific results to get a model-centric
model explanation, similarly to (Robnik-Šikonja & Kononenko, 2008; Zintgraf et al., 2017).

Net2Vec (Fong & Vedaldi, 2018) proposes a method for identifying and interpreting PDRs by op-
timising the combinations of filters for classification and segmentation on proxy ad hoc tasks. In
contrast, our method identifies the dependencies between neurons and it can ascertain the neuron
relevance using the original data set without the need to compile explanatory datasets for various
problems. Our work is comparable to excitation backpropagation (Zhang et al., 2016) and Pat-
ternNet (Kindermans et al., 2017), which distribute the relevance to a subset of neurons. Both
approaches focus on improving the heatmap quality either through a probabilistic winner-take-all
sampling approach (Excitation backpropagation) or through the product of weights and activations
(PatterNet). In contrast, we investigate the dependencies between PDRs; hence, we deploy a more
generalisable linear Taylor approximation and a statistical analysis over multiple inputs and neurons
to restrict the relevant neurons.

3 STEP-WISE SENSITIVITY ANALYSIS

Figure 1: (a) A sketch of how Step-wise Sensitivity
Analysis identifies PDRs of relevant neurons that can
be used to provide interpretation for a shark prediction.

Step-wise Sensitivity Analysis (SSA) is a DNN
interpretability framework that iteratively fol-
lows four steps through the DNN architecture.
The basic idea is illustrated in Figure 1. Given a
DNN classifier, a set of datapoints, and a set of
target labels in the form of relevant neurons in
the top layer n ∈ S, start from the top layer and
follow the four steps in Algorithm 1 to produce
a set of b relevant neurons Sl−1 from the lower
layer. Then S := Sl−1 and repeat until the input
layer.

Algorithm 1 consists of the following steps.
Step I. computes the relevance between all neu-
rons between two adjacent layers. Step II. aggregates across datapoints to weight the neuron rel-
evance w.r.t the datapoints under investigation. Step III. aggregate across upper-layer neurons to
weight the layer-wise importance of a neuron. This is a proxy of how much a neuron is reused
and shared across upper-layer neurons, hence it is a proxy for the likelihood of a neuron being part
of a PDR. In order to separate the relevant neurons into distinct PDRs, Step III. can be skipped to
preserve the mapping between an upper-layer neuron and its relevant neurons. This enables us to
investigate how the relevant neurons across the entire layer are distributed among upper-layer neu-
rons. Consequently, SSA is capable of producing both dependency graphs across the entire network
(global) and neuron-specific dependency graphs (local) that indicate the neurons pertinent to the
activation of an upper layer neuron. The result of the global execution is a set of relevant neurons in
each layer, while the result of the local execution is a set of neurons relevant to an upper-layer target
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neuron. Step IV. thresholds relevant neurons based on statistical analysis to get a total of b relevant
neurons.1

Algorithm 1: Step-wise sensitivity analysis: Identifying partially-distributed representations
INPUT: DNN classifier Φ, a layer f l ∈ Rd from Φ, a set of relevant neurons n ∈ S, and a set of images Ii ∈ I.
STEP I: Compute relevance of neurons using equation 1 in layer f l−1 for each n and Ii so that if f l−1 is a:

1. Fully-connected layer: stack results into a relevance tensor ωl
n,:,: ∈ R|S|×K ;

2. Convolutional layer: spatially average the output volume tensor ωl
n,i,... into a relevance tensor ωl

n,i,: ∈
R|S|×|I|×K ;

3. Pooling-layers: directly compute for l− 2: ωl = ∇
fl−2f

l|Ii
STEP II: Aggregate a relevance tensor ωl across data points to produce a relevance matrix ωl that indicates the relevance between the

neurons in layers l and l− 1. Aggregation can be either 1) an averaging aggregation function that yields continuous output; or
2) an outlier aggregation function (Tukey, 1977) that yields binary output.

STEP III: Aggregate a relevance matrix ωl across upper layer neurons to produce relevance vector ωl. The output is either global – giving
overall importance ranking of all neurons in a layer in the form of a relevance vector ωl; or local – skip this step to preserve
the relevance with respect to a particular neuron in the form of neuron-specific relevance vector ωl

n,:.
STEP IV: Threshold b relevant neurons. For global output, perform statistical thresholding of all neurons above a certain percentile such

that the resulting number of neurons equals b. For local output, select top b neuron values ωl
n,: for each n in S .

OUTPUT: Sl−1 with b relevant neurons.

SSA is a framework, so the first step can apply any method that computes relevance scores, including
gradient- (Ancona et al., 2018), statistical- (Zintgraf et al., 2017), or game-theory- (Chen et al.,
2019) based approaches. Here we demonstrate how the simplest possible method for computing
the relevance importance – sensitivity analysis (Baehrens et al., 2010; Simonyan et al., 2013) can
be used. Formally, we approximate the activation of on with a linear function given an image
I0, a representation function Φ : RH×W×C → Rd such that Φ(I) = o, and a neuron n. In the
neighbourhood of Ii, this is achieved by computing the first-order Taylor expansion: on = Φn(I) ≈
ωT I+ b where ω is the gradient of Φnwith respect to an image I. The function is evaluated at image
Ii – ω = ∂Φn

∂I

∣∣∣
Ii

.

Hence, we can interpret the magnitude of the values of ω as an importance metric corresponding to
each pixel. In other words, these values indicate which pixels need to be changed the least to change
Φ(I) such that on (corresponding to a classification decision) is increased the most.

We propose a much more fine-grained analysis based on the hypothesis that sensitivity analysis
can be used in an analogous way to determine the relevance between adjacent layers. Instead of
trying to approximate on directly, we consider Φ to be defined as the successive composition of
smaller functions that represent the transformations of data between layers – Φ(I) = f l(Φl−1(I)) =
f l ◦ f l−1 ◦ f l−2... ◦ f1(I), where l = 1...L, L is the network’s depth, and each layer denoted as
f l : Rd′ → Rd represents the operation applied by layer l, when d′ is the output dimensionality of
the input layer f l−1 and d is the output dimensionality of layer l. Hence, we can evaluate the Taylor
approximation at image I between a higher and lower layer, respectively l and j:

ωl
n,i,: =

∂f ln

(
Φj(I)

)
∂I

∣∣∣∣∣
Ii

(1)

4 RESULTS AND DISCUSSION

Quantitative Evaluation We conduct a quantitative evaluation of our SSA algorithm on two
datasets: circles dataset (one smaller circle inside a bigger one) and CIFAR-10. The accuracy on
the original task of the resulting dependency graph is compared to that of the original network. The
models are: 2 hidden-layer MLP (with 8 and 16 neurons respectively) for circles; and a convolu-
tional network (Conv-Net such that: conv 3x3x64, max-pool, conv 3x3x64, fully-connected-328,
fully-connected-194, soft-max-10 with RELU activations) that achieves 88.19% and 70.85% accu-
racy on the CIFAR-10 training and test sets respectively.

1Further details can be found in Appendix A.1.

3



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

We compare across 4 alternative techniques for equation 1, which we call relevance functions:
(weight abs) the absolute value of the weights; (activations abs) the absolute average activation
of a neuron over the target data; (weight act abs) the absolute average activation of a neuron over
the target data multiplied by the absolute value of the weight (in the spirit of Kindermans et al.
(2017)); (gradients) the absolute gradient values of a neuron w.r.t to the activation of an upper-layer
neuron averaged across the target data. We use averaging for STEP II and for STEP IV we threshold
only the neurons with values above the 50th percentile.

On the circles dataset, the activations, gradients, and weight act abs strategies compress the first
class perfectly, while for class 2 weight act abs outperforms gradients with 79.88% to 71.81%2. This
suggests that DNNs could be biased towards one class in binary classification. Table 4 illustrates that
for the Conv-Net case, activations, gradients, and weight act abs have comparable performances.
The benefit of using the gradients technique is that we can infer the sensitivity of an upper-layer
neuron w.r.t. all lower-layer ones and thus identify PDRs, which is impossible with the activations
strategy.

The most surprising result is the fact that the average true positive rate (TPR) of all class-specific
dependency graphs (dependency graphs extracted to represent a particular class using only data
corresponding to this class) outperforms the original network’s accuracy substantially – 93.75%,
86.30% vs 88.19% and 70.85% (for training and test set respectively), given that these graphs are
half the size of the original network! Hence, apart from their interpretability benefit, dependency
graphs may be also used for three additional purposes: 1) compressing large networks into smaller
ones; 2) extracting binary classifiers pertinent to a class; or 3) building more powerful ensemble
models from existing architectures.

Train Tr Class* Test Ts Class*

weight abs 51.60 51.6±23.53 46.86 46.86±23.07
weight act abs 51.26 91.54±13.25 45.79 83.22±19.81
gradients 45.28 93.12±8.76 41.54 85.53±17.02
activations abs 45.79 93.75±8.46 42.14 86.3±16.67

Table 1: CIFAR-10 Dataset. The table demonstrates the mean±standard deviation accuracy of the dependency
graphs over 100 different model initialisations. The columns indicate the training data-set for the relevance
functions and the evaluation. The Class* columns indicate the average TPR of class-specific dependency graphs
across the 10 classes, while Tr and Ts indicate training and test sets respectively. Compare to the original
accuracy of 88.19% and 70.85% training and test respectively.

Qualitative Evaluation We conduct qualitative analysis on 10 classes and 100 images per class
from ImageNet (Russakovsky et al., 2015) for the 16-layer VGG network (VGG16) (Simonyan &
Zisserman, 2014). The two examples of SSA in Figure 2 illustrate that different classes may share
significant similarities, sharing 6 out of the 8 most relevant activation maps and connections in
block_5_conv3 (blue rectangle). Additionally, both dependency graphs share multiple incom-
ing connections to the same neuron f b5c3155 (red circle). In Appendix A.2 we demonstrate that this
piece of information can be used for both targetted investigation of the DNN internal operations
and debugging of existing interpretability methods. For instance, we can now see that a the sin-
gle heatmap visualisation interpretation is insufficient since the shared relevant neuron (f b5c3155 ) has
highly activated large heatmap regions in instances of two classes.

Finally, we hypothesise that pattern matching and analysis of network motifs (Milo et al., 2002)
across class-specific dependency graphs illuminates PDRs and their relationships. Once identified,
PDRs can be assigned a semantic value and related to adjacent PDRs. The resulting graph would
resemble a decision tree, in which the execution of a decision would be easily traceable through
semantically interpretable binary decisions represented by PDRs. Therefore, we transform 10 class
specific dependency graphs into bag-of-nodes feature representations to investigate patterns within
the semantic properties of the dependency graphs. We perform the ward method (Murtagh & Leg-
endre, 2011) for hierarchical agglomerative clustering with cosine distance similarity to group the
dependency graphs. The results are inconclusive, with three clusters of most similar dependency
graphs – 1) hammerhead and tiger shark; 2) African and Indian elephant; 3) German Sheppard
and great white shark. The first two clusters consist of the most semantically and visually similar

2Further details can be found in Appendix A.2 Table 3

4



Presented at ICLR 2019 Debugging Machine Learning Models Workshop

(a) Class 4: ’Hammerhead shark’

(b) Class 285: ’Egyptian cat’

Figure 2: Dependency graphs for hammerhead shark and Egyptian cat classes (penultimate 4 layers, excluding
the pooling layer) expose the links only between the relevant neurons with a branching factor of 3.

classes – this supports the validity of our approach. In contrast, cluster 3) suggests an unnatural
similarity between animals. One possible explanation could be that both of these classes share a
similar PDR encoding, which will require further experiments to confirm.3

5 CONCLUSIONS & FUTURE WORK

Our main contribution to condense DNNs into smaller class-specific dependency graphs through the
aggregation of instance-specific results has implications from the interpretability, development and
debugging perspectives. From the interpretability perspective, we provide a methodology for the
identification and guided exploration of PDRs. Our technique is capable of distilling the network
into class-specific dependency graphs, which can act as binary classifiers for their corresponding
classes. Not only do these classifiers indicate the execution paths in DNNs that contribute to a deci-
sion, but they can be also used as an entirely new ensemble model, which significantly increases the
predictive accuracy. From the development and debugging perspective, we demonstrate an effective
way to compress a DNN by decreasing the number of neurons in half, while boosting the model per-
formance. Hence, we have found a way to quantitatively measure the quality of DNN architectures.
Future work could extend the method to semantically interpretable traces through the network that
justify the DNN output, which could resemble a program execution stack-trace. That could enable
the detection of unnecessary layers.

Furthermore, SSA can be used to evaluate and debug existing interpretability methods. We argue that
to gain a sound result in terms of interpretability and development, it is important to conduct analysis
across both classes and instances. Analysis conducted merely on single instances is insufficient and
misleading.

Step-wise sensitivity analysis opens an opportunity for further and more focused explorations of the
internal operations of DNNs. In this paper, we demonstrate that our method is mathematically and
conceptually sound. In the future, we will investigate further ways to exploit the approach in areas
such as error explanation and decision justification on a much lower level by providing a semantic
interpretation of the discovered PDRs through visualisation approaches. We will demonstrate the
features that make the difference between semantically similar classes and quantify the interpretabil-
ity of the resulting PDRs using concept segmentation as in (Fong & Vedaldi, 2018; Bau et al., 2017).
Finally, we will investigate the suitability of our approach for defending against adversarial attacks.
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A APPENDIX

A.1 METHOD: FURTHER DETAILS

STEP I: COMPUTE RELEVANCE TENSOR

Input: This step requires a network (Φ), a layer f l, a neuron n ∈ f l, and an image Ii.
Output: Computes the relevance score of neurons in layer f l−1 with respect to a neuron n in layer
f l as a gradient at Ii using equation 1. Essentially, this produces the relevance of all neurons in layer
f l−1 to the activation of neuron n.
Method: The relevance for DCNN is computed differently depending on the type of layer f l.

If f l is fully-connected, the result is a relevance vector ωl
n,i,: ∈ R|f l−1|. Repeating this process for

all images and neurons in S yields a relevance tensor ωl.

If l is a convolutional layer, the result of equation 1 is a 3D relevance tensor ωl
n,i,... ∈ RH×W×K ,

where H , W , K are respectively the height, width, and number of activation maps in l − 1. Since
every activation map k is produced by convolving identical weights onto a lower layer activation map
p, k represents the existence of an identical feature across p. Hence, the vector ωl

n,i,h,w,: represents
the relevance of all lower level activation maps (features) at a location (h,w) to the activation of n.
Since we are interested in the relative importance of a feature, we perform spatial-averaging over all

locations (h,w) to convert ωf l
n

i into a relevance vector ωf l
n

i ∈ RK , where each dimension indicates
the relative importance of an activation map across locations. This formulation enables us to repeat
the process for all images, neurons and again obtain a 3D relevance tensor ωl.

The pooling layers can be seen as a filter of their predecessors since df l

dIi
= c × df l−1

dIi
, where

c ∈ {0, 1}. Hence, if f l−1 is a pooling layer we compute the relevance tensor directly w.r.t l − 2:
ωl = ∇f l−2f l|Ii .
Notice that to analyse the evaluation results in Section 4 we can change equation 1 and experiment
with different values. For example, instead of gradients in equation 1, it can yield the connecting
weights, the actual activations (Φj(I)) or the element-wise product between the weights and the
activations. In the case of the weights, the next step is redundant since they do not vary with the
input samples.

STEP II: AGGREGATE ACROSS DATAPOINTS

Input: This steps requires a relevance tensor ωl.
Output: The result is a relevance matrix ωl that indicates the relevance between the neurons in
layers l and l − 1.
Method: This step aggregates across the dataset dimension of the relevance tensor ωl. We explore
two possible aggregation functions (averaging and outliers). Note that the aggregation functions
operate across all data points and as such they yield relative, not absolute results. That is, changing
the weights in the model results in an absolute change in all omega values, but relatively there will
be no difference.

The averaging technique takes the mean over the datapoints dimension to produce a relevance matrix
ωl, which indicates the average relevance across datapoints between neurons in layers l and l−1. On
the other hand, preliminary experiments indicated that each row ωl

n,i,: follows a normal distribution,
and consistently exhibits a small number of outliers across i. Therefore, we make the simplifying
assumption that these outliers are the only relevant neurons. Finally, we use the Tukey’s fences
(1.5× Inter-Quartile Range) outlier detection method (Tukey, 1977) to select relevant neurons from
each row ωl

n,i,:.

Observe that in the case of the averaging technique the relevance matrix ωl contains continuous
values, while in the outliers case it contains binary values.
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STEP III: AGGREGATING ACROSS UPPER LAYER NEURONS

Input: Relevance matrix ωl.
Output: Relevance vector ωl.
Method: Here we aggregate across the dimension of upper layer neurons to produce a global layer
ranking in the form of a relevance vector ωl. For the current iteration we use averaging; however,
in future work, we will explore different alternatives. Notice that it is possible to preserve the local
relevance of the neurons in this step, which enables us to produce a neuron-specific relevance vector
ωl
n,:. These vectors can be used to explore PDRs as we demonstrate in Section 4.

STEP IV: THRESHOLD

Input: Relevance vector ωl.
Output: Set Sl−1 of all relevant neurons for the lower layer.
Method: For the global relevance case, we perform statistical thresholding of all neurons above a
certain percentile such that the resulting number of neurons equals b. This results in a set Sl−1 of all
relevant neurons for the lower layer. In future work, we will explore alternative ways to perform the
thresholding.

For the local relevance case, we perform the aforementioned statistical thresholding across ωl
n,: for

each n to get a relationship R. R maps the set S′ of b′ relevant neurons for each distinct n in S to
the frequency with which they the neuron was deamed relavant. We rank all neurons in S′ based on
their frequency values to select top b neurons ωl

n,i as relevant, where b = |B| is the branching factor.

For both cases, we set Sl−1 to the union of all relevant neurons Bn (S ←
⋃

n Bn) for the lower
layer. For computational efficiency, the magnitude of b is a threshold for the cardinality of each Bn,
thus discarding a proportion of potential relevant neurons. We believe that b is an important hyper-
parameter since it limits the size of potential PDRs, which recent studies indicate to be typically
between 8 and 50 neurons (Fong & Vedaldi, 2018).

The time complexity of our approach in the worst-case isO(b∗d∗n), where b is the time to perform
the backward pass, d is the depth, and n is the maximum number of neurons (d = 22, n = 1024 in
the case of VGG16). The approach is still practical since it is not designed to be executed every time
that an explanation is necessary, just as a network is not retrained every time before a prediction.

In summary, our SSA algorithm is capable of producing both, dependency graphs across the entire
network (global) and neuron-specific dependency graphs (local) that indicate the neurons pertinent
to the activation of an upper layer neuron. The result of the global execution is a set of relevant
neurons in each layer, while the result of the local execution is a set of neurons relevant to an upper-
layer target neuron.

A.2 ADDITIONAL RESULTS

For the qualitative analysis, We use the publicly available pre-trained model implemented in the
deep learning framework keras (Chollet et al., 2015) and we use the outliers aggregation function
for STEP II and we threshold the top three omega values for each upper layer neuron.

Toy Problem These experiments evaluate the mathematical soundness of using gradients as a
measure of relevance with a toy non-linear binary classification problem of two circles – one smaller
circle inside a bigger one. A Multi-Layer Perceptron (MLP) with a single hidden layer of 3 neurons
can solve the problem, so we intentionally train a more complex 2 hidden-layer MLP (with 16 and
2 neurons respectively). The overall importance of a neuron can be approximated through ablation
experiments, in which the target neuron is disconnected from the network. The gold standard ranks
each neuron according to an importance score proportional to the performance degradation resulting
from its removal.

The Spearman’s ρ rank correlation coefficient between the gold standard and the predicted relevance
importance ranking of four alternative techniques to equation 1 is respectively -0.032, 0.309 , 0.371,
0.647 for: (weight strategy) the value of the weights; (absolute weight) the absolute value of the
weights; (activations) the absolute average activation of a neuron over the target data; (gradients)
the absolute gradient values of a neuron w.r.t to the activation of an upper-layer neuron averaged
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TECHNIQUE SPEARMAN’S ρ
WEIGHTS -0.032
ACTIVATIONS 0.309
GRADIENTS 0.371
ABSOLUTE WEIGHTS 0.647

Table 2: Spearman’s ρ rank correlation coefficient between the predicted relevance importance ranking and
the gold standard - +1 perfect monotone relationship, −1 opposed monotone relationship. Notice that the
gradients strategy outperforms the activations, while coming short to the absolute weights technique.

TRAIN TEST CLASS 1 CLASS 2

WEIGHT ACT 81.41±13.35 80.88±13.29 95.05±13.56 69.38±26.28
WEIGHT 82.72±12.58 82.23±13.0 96.17±12.17 69.37±26.41
WEIGHT ABS 87.12±10.08 86.47±10.59 97.21±5.63 76.57±22.2
ACTIVATIONS 71.36±15.58 72.27±15.91 100.0±0.0 71.23±27.84
ACTIVATIONS ABS 71.36±15.58 72.27±15.91 100.0±0.0 71.23±27.84
GRADS 74.14±13.63 73.82±13.94 100.0±0.0 71.81±26.0
GRADS ABS 74.14±13.63 73.82±13.94 100.0±0.0 71.81±26.0
WEIGHT ACT ABS 75.36±10.39 75.92±10.91 100.0±0.0 79.88±16.82

Table 3: Toy Example Dataset. The table demonstrates the mean±standard deviation performance
of the dependency graphs over 100 different model initialisations. The columns indicate from which
data-set the target data for the compute functions was acquired and for which data-set was the eval-
uation performed. The class columns indicate which of the two classes is considered.

TRAIN TR CLASS* TEST TS CLASS*

WEIGHT ACT 16.83 0.0±0.0 16.05 0.0±0.0
WEIGHT 16.80 16.8±26.79 16.29 16.29±27.21
WEIGHT ABS 51.60 51.6±23.53 46.86 46.86±23.07
WEIGHT ACT ABS 51.26 91.54±13.25 45.79 83.22±19.81
GRADS 45.28 93.12±8.76 41.54 85.53±17.02
GRADS ABS 45.28 93.12±8.76 41.54 85.53±17.02
ACTIVATIONS 45.79 93.75±8.46 42.14 86.3±16.67
ACTIVATIONS ABS 45.79 93.75±8.46 42.14 86.3±16.67

Table 4: CIFAR-10 Dataset. The table demonstrates the mean±standard deviation performance of
the dependency graphs over 100 different model initialisations. The columns indicate from which
data-set the target data for the compute functions was acquired and for which data-set was the eval-
uations performed. The Class* columns indicate that the results are averaged across the 10 classes,
while Tr and Ts indicate training and test set respectively.

across the target data. Although the absolute weights strategy exhibits the highest correlation with
the gold standard, it is limited to global results. That is, the relevance ranking corresponds solely
to the overall performance of the network in contrast to the local performance for a specific class,
which can be produced by the gradients.

Application of Step-wise Sensitivity Analysis As demonstarted in Section 4, Step-wise sensi-
tivity analysis allows developers to focus analysis and interpretation efforts on the most pertinent
regions of a DNN. For example, Figure 2 illustrates the importance of neuron f b5c3155 (red circle).
Figures 4(a) & 4(b) display targeted visualisation through guided backpropagation Springenberg
et al. (2014) of the especially relevant neuron f b5c3155 . Had we relied on a single visualisation, we
would have erroneously presumed that the neuron perfectly encodes either the idea of a shark or
of a cat. However, step-wise sensitivity analysis exposes that the neuron is equally important for
both classes, and forms a part of a shared sub-structure. Therefore, it must encode a more abstract
concept. These results confirm previous results in line with the fragility of sensitivity analysis-based
visualisaiton (Adebayo et al., 2018).

Exploring a neuron or activation map in isolation is simplistic. In reality, the semantics are ex-
pressed within the combination of neurons within the PDR. In future work, we will apply activation
maximisation Erhan et al. (2009) to an entire PDR to investigate its semantic properties.
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Figure 3: A clustered heatmap (clustermap) of each of the 10 dependency graphs (spanning the entire network)
into a bag-of-nodes features representation. The x,y, z-axis respectively represent neuron, class, and presence
of the neuron in the dependency graph – red present, blue absent. The dendrograms on the side indicate the
relative distance between points and clusters. As expected, most of the lower layer activation maps are shared
across all classes since they encode very abstract features. Notice the three small clusters of semantically
similar classes on the side.

(a) Class 4: ‘Hammerhead shark’ (b) Class 285: ‘Egyptian cat’

Figure 4: a) & b) Guided-backpropagation of activation map fb5c3
155 indicating the regions of the image from the

corresponding class. Red and blue respectively correspond to positive or negative contribution to the activation.
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