
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

SIMILARITY OF NEURAL NETWORK REPRESENTA-
TIONS REVISITED

Simon Kornblith, Mohammad Norouzi, Honglak Lee & Geoffrey Hinton
Google Brain
{skornblith,mnorouzi,honglak,geoffhinton}@google.com

ABSTRACT

Recent work has sought to understand the behavior of neural networks by compar-
ing representations between layers and between different trained models. We in-
troduce a similarity index that measures the relationship between representational
similarity matrices. We show that this similarity index is equivalent to centered
kernel alignment (CKA) and analyze its relationship to canonical correlation anal-
ysis. Unlike other methods, CKA can reliably identify correspondences between
representations of layers in networks trained from different initializations. More-
over, CKA can reveal network pathology that is not evident from test accuracy
alone.

1 INTRODUCTION

Despite impressive empirical advances in deep neural networks for solving various tasks, the
problem of understanding and characterizing the learned representations remains relatively under-
explored. This work investigates the problem of measuring similarities between deep neural network
representations. We build upon previous studies investigating similarity between the representations
of different neural networks (Li et al., 2015; Raghu et al., 2017; Morcos et al., 2018; Wang et al.,
2018) and get inspiration from extensive neuroscience literature that uses representational similarity
to compare representations across brain areas (Freiwald & Tsao, 2010), individuals (Connolly et al.,
2012), species (Kriegeskorte et al., 2008), and behaviors (Elsayed et al., 2016), as well as between
brains and neural networks (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Our key
contributions are summarized as follows:

• We motivate and introduce centered kernel alignment (CKA) as a similarity index.
• We analyze the relationship between CKA and canonical correlation analysis (CCA).
• We show that CKA is able to determine the correspondence between the hidden layers

of neural networks trained from different random initializations and with different depths,
scenarios where existing similarity indexes do not work well.

• We demonstrate the utility of CKA for discovering training pathology and understanding
relationships among neural network architectures.

Problem Statement. We begin by defining the problem of measuring representational similarity of
deep neural networks. Let X ∈ Rn×p1 denote a matrix of activations of p1 neurons for n examples,
and Y ∈ Rn×p2 denote a matrix of activations of p2 neurons for the same examples. We assume that
these matrices are centered , and without loss of generality that p1 ≤ p2. We are concerned with the
design and analysis of a scalar similarity index s(X,Y) that can be used to compare representations.

2 COMPARING SIMILARITY STRUCTURES

Our key insight is that instead of comparing multivariate features of an example in the two repre-
sentations (e.g. via regression), one can first measure the similarity between every pair of examples
in each representation separately, and then compare the similarity structures. We show below that,
if we use an inner product to measure similarity, the similarity between representational similarity
matrices reduces to another intuitive notion of pairwise feature similarity.

1

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Dot Product-Based Similarity. A simple formula relates dot products between examples to dot
products between features:

〈vec(XXT), vec(Y Y T)〉 = tr(XXTY Y T) = ||Y TX||2F (1)

The elements of XXT and Y Y T are dot products between the representations of the ith and jth

examples, and indicate the similarity between these examples according to the respective networks.
The left-hand side of equation 1 thus measures the similarity between the inter-example similarity
structures. The right-hand side shows that the same result is obtained by measuring the similarity
between features from X and Y , by summing the squared dot products between every pair.

Hilbert-Schmidt Independence Criterion. Because we assume that X and Y are centered, equa-
tion 1 is proportional to the squared Frobenius norm of the cross-covariance matrix between the
features ofX and Y . The Hilbert-Schmidt Independence Criterion (Gretton et al., 2005) generalizes
this index to inner products from reproducing kernel Hilbert spaces. Let Kij = k(xi,xj) and let
Lij = l(yi,yj) where k and l are kernel functions. The empirical estimator of HSIC is:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH) (2)

where H is the centering matrix Hn = In − 1
n11

T. For a linear kernel between centered represen-
tations, HSIC(XXT, Y Y T) = tr(XXTY Y T)/(n− 1)2.

Centered Kernel Alignment. HSIC is not invariant to isotropic scaling of features. A normalized
form, known as centered kernel alignment (Cortes et al., 2012; Cristianini et al., 2002), can be
obtained as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(3)

For a linear kernel, CKA is equivalent to the RV coefficient (Robert & Escoufier, 1976) and to
Tucker’s congruence coefficient (Tucker, 1951; Lorenzo-Seva & Ten Berge, 2006).

Below, we report results of CKA with a linear kernel and the RBF kernel k(xi, xj) = exp(−||xi −
xj ||22/(2σ2)). For the RBF kernel, there are several possible strategies for selecting the bandwidth σ,
which controls the extent to which similarity of small distances is emphasized over large distances.
We set σ as a fraction of the median distance between examples. For CNNs, we find that RBF kernels
and linear kernels give similar results, so we use linear CKA unless otherwise specified. However,
the framework extends to any valid kernel, including kernels equivalent to neural networks (Lee
et al., 2018; Jacot et al., 2018; Garriga-Alonso et al., 2018; Novak et al., 2019).

3 CKA VERSUS CCA

Rewriting linear CKA in terms of the eigenvectors and eigenvalues of XXT and Y Y T, i.e. the prin-
cipal components of X and Y and the amount of variance that they explain, provides some intuition
regarding its relationship with canonical correlation analysis. R2

CCA, the sum of the squared canon-
ical correlations, is given by the normalized sum of the squared dot products between eigenvectors.
CKA resembles R2

CCA, but with the contributions of each pair of eigenvectors weighted by their
corresponding eigenvalues. Let the ith eigenvector of XXT be indexed as ui

X and corresponding
eigenvalue as λiX . Then:

R2
CCA = ||UT

Y UX ||2F/p1 =

p1∑
i=1

p2∑
j=1

〈ui
X ,u

j
Y 〉

2/p1 (4)

CKA(XXT, Y Y T) =
||Y TX||2F

||XTX||F||Y TY ||F
=

∑p1

i=1

∑p2

j=1 λ
i
Xλ

j
Y 〈ui

X ,u
j
Y 〉2√∑p1

i=1(λiX)2
√∑p2

j=1(λjY)2
(5)

CCA weights all eigenvectors equally, and is thus invariant to any invertible linear transformation
of the features of X and Y . By contrast, CKA places greater weight on eigenvectors that explain

2

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

2 4 6 8
Layer

2
4
6
8

La
ye

r

CCA (R 2
CCA)

0.2
0.3
0.4
0.5

2 4 6 8
Layer

SVCCA (R 2
CCA)

0.2
0.3
0.4
0.5
0.6
0.7

2 4 6 8
Layer

Linear Reg.

0.2
0.4
0.6
0.8

2 4 6 8
Layer

CKA (Linear)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 4 6 8
Layer

CKA (RBF 0.4)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Si
m

ila
rit

y

Figure 1: CKA finds correspondences between layers of CNNs trained with different random ini-
tializations, whereas other methods do not. Additional SVCCA truncation thresholds are shown in
Appendix Figure C.4. For linear regression, we plot R2 for the fit of the layer on the x-axis with the
layer on the y-axis. Results are averaged over 45 pairs of networks. See also Table 1.

more variance, and is thus invariant only to orthogonal transformations, which preserve Euclidean
distances between examples in feature space.

We argue that invariance to orthogonal transformation, but not arbitrary linear transformation, is ap-
propriate for measuring similarity in neural networks. Neural networks learn feature spaces where
distances are meaningful, as demonstrated by the success of perceptual loss and style transfer (Gatys
et al., 2016; Johnson et al., 2016; Dumoulin et al., 2017). In the linear case, it can be shown that
dynamics of gradient descent are invariant to orthogonal transformation but not invertible linear
transformation (LeCun et al., 1991), and in the case of overparameterization or early stopping, the
solution reached is scale-dependent. Invariance to invertible linear transformation also presents
practical problems for measuring similarity between wide layers; any similarity index that is invari-
ant to invertible linear transformation gives the same result for any representation of width greater
than or equal to the dataset size. We discuss invariance properties and their implications further in
Appendix A.

Because CKA can be computed efficiently, it is potentially useful as a tool for practitioners. Whereas
computing CCA requires matrix decompositions, CKA requires only inner products. There is an un-
biased estimator of HSIC (Song et al., 2007) that permits estimation of CKA based on accumulation
of scalar minibatch statistics. Thus, CKA can be integrated into model evaluation pipelines without
incurring excessive computational cost.

4 RESULTS

4.1 A SANITY CHECK FOR SIMILARITY INDEXES

Index Accuracy
CCA (ρ̄) 1.4
CCA (R2

CCA) 10.6
SVCCA (ρ̄) 9.9
SVCCA (R2

CCA) 15.1
PWCCA 11.1
Linear Reg. 45.4
CKA (Linear) 99.3
CKA (RBF 0.2) 80.6
CKA (RBF 0.4) 99.1
CKA (RBF 0.8) 99.3

Table 1: Accuracy of identify-
ing corresponding layers based
maximum similarity, for 45
pairs of architecturally iden-
tical 10-layer CNNs trained
from different initializations.

We propose a simple sanity check for similarity indexes: Given
two architecturally identical networks trained from different ran-
dom initializations, for each layer in the first network, the most
similar layer in the second network should be the architecturally
corresponding layer. We compare CKA to CCA, singular vector
CCA (SVCCA) (Raghu et al., 2017), projection-weighted CCA
(PWCCA) (Morcos et al., 2018), and linear regression; see Ap-
pendix B for more details. For CCA and SVCCA, we compute
similarity as either the sum of the canonical correlations (ρ̄) as in
Raghu et al. (2017), or as the sum of the squared canonical corre-
lations (R2

CCA).

We first investigate a simple VGG-like convolutional neural net-
work based on All-CNN-C (Springenberg et al., 2014). We provide
architecture details in Appendix D. We show results in Figure 1
and Table 1. CKA passes our sanity check: Across

(
10
2

)
= 45

pairs of models, a given layer had greater CKA similarity with the
corresponding layer in the other model than with any other layer
for 99.3% of pairs. Other methods performed substantially worse.

3

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

La
ye

r

1x Depth (94.1%)

5 10 15

5

10

15

2x Depth (95.0%)

5 10 15 20 25 30

5
10
15
20
25
30

4x Depth (93.2%)

10 20 30 40 50 60

10
20
30
40
50
60

8x Depth (91.9%)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Si
m

ila
rit

y

1 2 3 4 5 6 7 8 9
Layer

0.6
0.8
1.0

Ac
cu

ra
cy

5 10 15
Layer

0.6
0.8
1.0

5 10 15 20 25 30
Layer

0.6
0.8
1.0

10 20 30 40 50 60
Layer

0.6
0.8
1.0

Figure 2: CKA reveals when depth becomes pathological. Top: Linear CKA between layers of
individual networks of different depths on CIFAR-10. Titles show accuracy of each network. Later
layers of the 8x depth network are similar to the last layer. Bottom: Accuracy of a logistic regression
classifier trained on layers of the same networks is consistent with CKA.

5 10 15
Plain-18 Layer

2
4
6
8

Pl
ai

n-
10

 L
ay

er

2 4 6 8 1012
ResNet-14 Layer

2
4
6
8

Pl
ai

n-
10

 L
ay

er

10 20 30
ResNet-32 Layer

2
4
6
8

10
12
14
16

Pl
ai

n-
18

 L
ay

er

10 20 30
ResNet-32 Layer

2
4
6
8

10
12

R
es

N
et

-1
4

La
ye

r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: Linear CKA between layers of
networks with different architectures.

4 16 64 256 1024 4096
Width

0.5

0.6

0.7

0.8

0.9

1.0
C

KA
 (L

in
ea

r)
Similarity with Width 4096

4 16 64 256 1024 4096
Width

Similarity with Same Width

conv1
conv2
conv3
conv4

conv5
conv6
conv7
conv8

Figure 4: Layers become more similar to each other and
to wide models as width increases; similarity of early
layers saturates first. Left: Similarity with the widest
network. Right: Similarity with other networks of the
same width trained from random initialization.

Both CKA and CCA-based methods give reasonable results for Transformer networks, where all
layers are of equal width, as shown in Appendix C.1. However, in most settings, RBF CKA was
more accurate at identifying correspondences between Transformer layers than other methods.

4.2 CKA REVEALS NETWORK PATHOLOGY

In Figure 2, we show CKA between layers of similar CNNs with different depths, where we repeat
every layer 2, 4, or 8 times to deepen the network. Doubling depth improves accuracy, but further
increasing of depth (4x and 8x) hurts accuracy. At 8x depth, CKA indicates that representations of
more than half of the network are very similar to the last layer. We validated that these later layers do
not refine the representation by training an `2-regularized logistic regression classifier on each layer
of the network. Shallower architectures show a progressive improvement in classification accuracy,
but accuracy of the 8x deeper network plateaus.

4.3 USING CKA TO UNDERSTAND NETWORK ARCHITECTURES

CKA is equally effective at measuring relationships between different architectures. Figure 3 shows
the relationship between different layers of plain CNNs and ResNets. CKA indicates that, as net-
works are made deeper, the new layers are effectively inserted in between old layers. Other simi-
larity indexes fail to reveal meaningful relationships between different architectures, as we show in
Appendix C.5.

In Figure 4, we show CKA between networks with different layer widths. Like Morcos et al. (2018),
we find that increasing layer width leads to more similar representations between networks. As width

4

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

increases, CKA approaches 1 and CKA of earlier layers saturates faster than later layers. Networks
are generally more similar to other networks of the same width than they are to the widest network.

4.4 SIMILAR REPRESENTATIONS ACROSS DATASETS

1 2 3 4 5 6 7 8 9
Layer

0.0
0.2
0.4
0.6
0.8
1.0

C
KA

 (L
in

ea
r)

Similarity on CIFAR-10

1 2 3 4 5 6 7 8 9
Layer

Similarity on CIFAR-100

CIFAR-10 Net vs. CIFAR-10 Net
CIFAR-100 Net vs. CIFAR-100 Net
CIFAR-10 Net vs. CIFAR-100 Net

Untrained vs. CIFAR-10 Net
Untrained vs. CIFAR-100 Net

Figure 5: Models trained on different datasets develop
similar representations in early layers; these representa-
tions differ from untrained models. Left: Linear CKA be-
tween the same layer of different models on the CIFAR-10
test set. Right: CKA on CIFAR-100 test set. CKA is av-
eraged over 10 models of each type.

CKA can also be used to compare net-
works trained on different datasets. In
Figure 5, we show that models trained
on CIFAR-10 and CIFAR-100 develop
similar representations in their early
layers. These representations require
training; similarity with untrained net-
works is much lower. We further ex-
plore similarity between layers of un-
trained networks in Appendix C.6.

5 CONCLUSION

Measuring similarity between the rep-
resentations learned by neural net-
works is an ill-defined problem, since it
is not entirely clear what aspects of the
representation a similarity index should
focus on. We have shown that, unlike previously proposed similarity indexes, CKA captures intu-
itive notions of similarity, i.e. that neural networks trained from different initializations should be
similar to each other. CKA also has practical utility for understanding network pathology: By in-
specting CKA between layers, we can explain what happens when a CNN becomes “too deep” in
terms of the learned representation.

ACKNOWLEDGEMENTS

We thank Gamaleldin Elsayed, Jaehoon Lee, Maithra Raghu, Samuel L. Smith, and Alex Williams
for comments on the manuscript, Rishabh Agarwal for ideas, and Aliza Elkin for support.

REFERENCES

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
network error surfaces. Neural Computation, 5(6):910–927, 1993.

Andrew C Connolly, J Swaroop Guntupalli, Jason Gors, Michael Hanke, Yaroslav O Halchenko,
Yu-Chien Wu, Hervé Abdi, and James V Haxby. The representation of biological classes in the
human brain. Journal of Neuroscience, 32(8):2608–2618, 2012.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. Journal of Machine Learning Research, 13(Mar):795–828, 2012.

Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz S Kandola. On kernel-target align-
ment. In Advances in Neural Information Processing Systems, pp. 367–373, 2002.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. International Conference on Learning Representations, 2, 2017.

Gamaleldin F Elsayed, Antonio H Lara, Matthew T Kaufman, Mark M Churchland, and John P
Cunningham. Reorganization between preparatory and movement population responses in motor
cortex. Nature communications, 7:13239, 2016.

5

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Winrich A Freiwald and Doris Y Tsao. Functional compartmentalization and viewpoint generaliza-
tion within the macaque face-processing system. Science, 330(6005):845–851, 2010.

Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolutional net-
works as shallow gaussian processes. arXiv preprint arXiv:1808.05587, 2018.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2414–2423, 2016.

Gene H Golub and Hongyuan Zha. The canonical correlations of matrix pairs and their numerical
computation. In Linear Algebra for Signal Processing, pp. 27–49. Springer, 1995.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International conference on algorithmic learning theory,
pp. 63–77. Springer, 2005.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. i-revnet: Deep invertible networks.
arXiv preprint arXiv:1802.07088, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision, pp. 694–711. Springer, 2016.

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsupervised,
models may explain it cortical representation. PLoS computational biology, 10(11):e1003915,
2014.

Nikolaus Kriegeskorte, Marieke Mur, Douglas A Ruff, Roozbeh Kiani, Jerzy Bodurka, Hossein
Esteky, Keiji Tanaka, and Peter A Bandettini. Matching categorical object representations in
inferior temporal cortex of man and monkey. Neuron, 60(6):1126–1141, 2008.

Malte Kuss and Thore Graepel. The geometry of kernel canonical correlation analysis. Technical
report, Max Planck Institute for Biological Cybernetics, 2003.

Yann LeCun, Ido Kanter, and Sara A Solla. Second order properties of error surfaces: Learning time
and generalization. In Advances in Neural Information Processing Systems, pp. 918–924, 1991.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Dmitry Storcheus, Afshin Ros-
tamizadeh, and Sanjiv Kumar (eds.), Proceedings of the 1st International Workshop on Feature
Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings of Ma-
chine Learning Research, pp. 196–212, Montreal, Canada, 11 Dec 2015. PMLR.

Urbano Lorenzo-Seva and Jos MF Ten Berge. Tucker’s congruence coefficient as a meaningful
index of factor similarity. Methodology, 2(2):57–64, 2006.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems 31, pp.
5732–5741, 2018.

Youssef Mroueh, Etienne Marcheret, and Vaibhava Goel. Asymmetrically weighted cca and hier-
archical kernel sentence embedding for multimodal retrieval. arXiv preprint arXiv:1511.06267,
2015.

6

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jeffrey
Pennington, and Jascha Sohl-dickstein. Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference on Learning Representations, 2019.

Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. In International Conference
on Learning Representations, 2018.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl- Dickstein. SVCCA: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. arXiv e-prints, art.
arXiv:1706.05806, June 2017.

J.O. Ramsay, Jos ten Berge, and G.P.H. Styan. Matrix correlation. Psychometrika, 49(3):403–423,
1984.

Paul Robert and Yves Escoufier. A unifying tool for linear multivariate statistical methods: the
RV-coefficient. Applied Statistics, pp. 257–265, 1976.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

SAS Institute. Introduction to Regression Procedures. 2015. URL https://support.sas.
com/documentation/onlinedoc/stat/141/introreg.pdf.

Le Song, Alex Smola, Arthur Gretton, Karsten M Borgwardt, and Justin Bedo. Supervised feature
selection via dependence estimation. In Proceedings of the 24th international conference on
Machine learning, pp. 823–830. ACM, 2007.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

StataCorp. Stata Multivariate Statistics Reference Manual. 2015. URL https://www.stata.
com/manuals14/mv.pdf.

Ledyard R Tucker. A method for synthesis of factor analysis studies. Technical report, Educational
Testing Service, Princeton, NJ, 1951.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Liwei Wang, Lunjia Hu, Jiayuan Gu, Yue Wu, Zhiqiang Hu, Kun He, and John E. Hopcroft. Towards
understanding learning representations: To what extent do different neural networks learn the
same representation. In Advances in Neural Information Processing Systems, pp. 9607–9616,
2018.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, 2014.

7

https://support.sas.com/documentation/onlinedoc/stat/141/introreg.pdf
https://support.sas.com/documentation/onlinedoc/stat/141/introreg.pdf
https://www.stata.com/manuals14/mv.pdf
https://www.stata.com/manuals14/mv.pdf

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

APPENDIX

This appendix contains additional theoretical and experimental results not discussed in the main
text of the workshop paper. Section A motivates the use of a similarity index that is invariant to
orthogonal transformation and isotropic scaling, but not to invertible linear transformation, as a tool
for measuring similarity between neural network representations. Section B introduces the similarity
indexes that we compare against, as well as other previously proposed similarity indexes. Section C
describes additional experiments, including sanity check results for the Transformer architecture,
an analysis of the shared subspace of neural networks that provides further insight into what CKA
measures, and similarity results under a variety of settings not explored in the main text. Finally,
Section D describes the architectures used for experiments.

A INVARIANCE PROPERTIES OF SIMILARITY INDEXES AND THEIR
IMPLICATIONS

In this section, we argue that both intuitive notions of similarity and the dynamics of neural network
training call for a similarity index that is invariant to orthogonal transformation and isotropic scaling,
but not invertible linear transformation.

A.1 INVARIANCE TO INVERTIBLE LINEAR TRANSFORMATION

A similarity index is invariant to invertible linear transformation if s(X,Y) = s(XA,Y B) for any
full rank A and B. If activations X are followed by a fully-connected layer f(X) = σ(XW + β),
then transforming the activations by a full rank matrix A as X ′ = XA and transforming the weights
by the matrix inverse A−1 as W ′ = A−1W preserves the output of f(X). This transformation does
not appear to change how the network operates, so intuitively, one might prefer a similarity index
that is invariant to any invertible linear transformation, as argued by Raghu et al. (2017).

However, a key limitation of invariance to invertible linear transformation is that any invariant simi-
larity index gives the same result for any representation of width greater than or equal to the dataset
size, i.e. p2 ≥ n.

Theorem A.1. Let X and Y be n× p matrices. Suppose s is invariant to invertible linear transfor-
mation in the first argument, i.e. s(X,Z) = s(XA,Z) for arbitrary Z and anyA with rank(A) = p.
If rank(X) = rank(Y) = n, then s(X,Z) = s(Y, Z).

Proof. Let

X ′ =

[
X
KX

]
Y ′ =

[
Y
KY

]
where KX is a basis for the null space of the rows of X and KY is a basis for the null space of the
rows of Y . Then let A = X ′−1Y ′.[

X
KX

]
A =

[
Y
KY

]
=⇒ XA = Y

Because X ′ and Y ′ have rank p by construction, A exists and has rank p. Thus, s(X,Z) =
s(XA,Z) = s(Y,Z).

There is thus a practical problem with invariance to invertible linear transformation: Some neural
networks, especially convolutional networks, have more neurons in some layers than there are ex-
amples the training dataset. It is somewhat unnatural that a similarity index could require more
examples than were used to train the network.

A deeper issue is that neural network training is not invariant to arbitrary invertible linear transfor-
mation of inputs or activations. Even in the linear case, gradient descent converges first along the
eigenvectors corresponding to the largest eigenvalues of the input covariance matrix (LeCun et al.,
1991), and in cases of overparameterization or early stopping, the solution reached depends on the
scaling of the input. Similar results holds for gradient descent training of neural networks in the

8

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Net A PC 2
N

et
 A

 P
C

 1
Net B PC 2

N
et

 B
 P

C
 1

Examples Colored By Net A Principal Components

Figure A.1: First principal components of representations of networks trained from different ran-
dom initializations are similar. Each example from the CIFAR-10 test set is shown as a dot colored
according to the value of the first two principal components of an intermediate layer of one net-
work (left) and plotted on the first two principal components of the same layer of an architecturally
identical network trained from a different initialization (right).

infinite width limit (Jacot et al., 2018). The importance of scaling in neural networks is further
demonstrated by the popularity of batch normalization (Ioffe & Szegedy, 2015).

Invariance to invertible linear transformation implies that the scale of directions in activation space
is irrelevant. Empirically, however, scale information is both consistent across networks and useful
across tasks. Neural networks trained from different random initializations develop representations
with similar large principal components, as shown in Figure A.1. Consequentially, Euclidean dis-
tances between examples, which depend primarily upon large principal components, are similar
across networks. These distances are meaningful, as demonstrated by the success of perceptual loss
and style transfer (Gatys et al., 2016; Johnson et al., 2016; Dumoulin et al., 2017). A similarity in-
dex that is invariant to invertible linear transformation ignores this aspect of the representation, and
assigns the same score to networks that match only in large principal components as to networks
that match only in small principal components.

A.2 INVARIANCE TO ORTHOGONAL TRANSFORMATION

Rather than requiring invariance to any invertible linear transformation, one could require a weaker
condition, invariance to orthogonal transformation, i.e. s(X,Y) = s(XU, Y V) for full-rank or-
thonormal matrices U and V such that UTU = I and V TV = I .

Indexes invariant to orthogonal transformations do not share the limitations of indexes invariant
to invertible linear transformation. When p2 > n, indexes invariant to orthogonal transformation
remain well-defined. Moreover, orthogonal transformations preserve scalar products and Euclidean
distances between examples.

Invariance to orthogonal transformation is desirable for neural networks trained by gradient descent.
Invariance to orthogonal transformation implies invariance to permutation, which is needed to ac-
commodate symmetries of neural networks (Chen et al., 1993; Orhan & Pitkow, 2018). In the linear
case, orthogonal transformation of the input does not affect the dynamics of gradient descent training
(LeCun et al., 1991), and for networks initialized with rotationally symmetric weight distributions,
e.g. i.i.d. Gaussian weight initialization, training with fixed orthogonal transformations of activa-
tions yields the same distribution of training trajectories as untransformed activations, whereas an
arbitrary linear transformation would not.

Given a similarity index s(·, ·) that is invariant to orthogonal transformation, one can construct a
similarity index s′(·, ·) that is invariant to any invertible linear transformation by first orthonor-
malizing the columns of X and Y , and then applying s(·, ·), i.e. given thin QR decompositions
X = QARA and Y = QBRB for QT

XQX = QT
YQY = I , one can construct a similarity index

s′(X,Y) = s(QX , QY). s′(·, ·) is invariant to invertible linear transformation because orthonormal
bases with the same span are related to each other by orthonormal transformation. We show this
formally below.

9

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Invariant to
Invertible Linear Orthogonal Isotropic

Similarity Index Formula Transform Transform Scaling
CCA (R2

CCA) ||QT
YQX ||2F/p1 3 3 3

CCA (ρ̄CCA) ||QT
YQX ||∗/p1 3 3 3

SVCCA (R2
SVCCA) ||(UY TY)TUXTX ||2F/min(||TX ||2F , ||TY ||2F) In a Subspace 3 3

SVCCA (ρ̄SVCCA) ||(UY TY)TUXTX ||∗/min(||TX ||2F , ||TY ||2F) In a Subspace 3 3

Linear Reg. (R2
LR) ||QT

YX||2F/||X||2F Y Only 3 3
PWCCA

∑p1
i=1 αiρi/||α||1, αi =

∑
j |〈hi,xj〉| 7 7 3

Linear CKA ||Y TX||2F/(||XTX||F||Y TY ||F) 7 3 3

RBF CKA tr(KHLH)/
√

tr(KHKH)tr(LHLH) 7 3 31

Table B.1: Summary of similarity methods investigated. QX and QY are orthonormal bases for the
columns of X and Y . UX and UY are the left-singular vectors of X and Y sorted in descending
order according to the corresponding singular vectors. || · ||∗ denotes the nuclear norm. TX and
TY are truncated identity matrices that select left-singular vectors such that the cumulative variance
explained reaches some threshold. For RBF CKA, K and L are kernel matrices constructed by
evaluating the RBF kernel between the examples, and H is the centering matrix Hn = In − 1

n11
T.

Proposition A.1. LetX be an n×pmatrix of full column rank and letA be an invertible p×pmatrix.
Let X = QXRX and XA = QXARXA, where QT

XQX = QT
XAQXA = I and RX and RXA are

invertible. If s(·, ·) is invariant to orthogonal transformation, then s(QX , Y) = s(QXA, Y).

Proof. If QXA = QXA, then:

I = QT
XAQXA = ATQT

XQXA = ATA

X and XA, and thus QX and QXA, have the same column span, so A exists. Specifically, A =
RXAR

−1
XA. Thus, s(QX , Y) = s(QXA, Y) = s(QXA, Y).

A.3 INVARIANCE TO ISOTROPIC SCALING

We expect the similarity index to be invariant to isotropic scaling, i.e. s(X,Y) = s(αX, βY) for
any α, β ∈ R+. That said, if a similarity index is invariant to both orthogonal transformation and
non-isotropic scaling, i.e. rescaling of individual features, then it is invariant to any invertible linear
transformation. This follows from the existence of the singular value decomposition of the trans-
formation matrix. Generally, we are interested in similarity indexes that are invariant to isotropic
scaling but not necessarily invariant to non-isotropic scaling.

B RELATED SIMILARITY INDEXES

In this section, we briefly review linear regression, canonical correlation, and other related methods
in the context of measuring similarity between neural network representations. We let QX and QY

represent any orthonormal bases for the columns of X and Y , i.e. QX = X(XTX)−1/2, QY =
Y (Y TY)−1/2 or rotations thereof. Table B.1 summarizes the formulae and invariance properties
of the indexes used in experiments. For a comprehensive review of linear indexes for measuring
multivariate similarity, see Ramsay et al. (1984).

Linear Regression. A simple way to relate neural network representations is via linear regression.
One can fit every neuron in Y as a linear combination of neurons from X . A suitable summary
statistic is the total fraction of variance explained by the fit:

R2
LR = 1− minB ||Y −XB||2F

||Y ||2F
=
||QT

YX||2F
||X||2F

(6)

1Invariance of RBF CKA to isotropic scaling depends on the procedure used to select the RBF kernel
bandwidth parameter. In our experiments, we select the bandwidth as a fraction of the median distance, which
yields a similarity index that is invariant to isotropic scaling.

10

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

We are unaware of any application of linear regression to measuring similarity of neural network
representations, although Romero et al. (2014) used a least squares loss between activations of two
networks to encourage thin and deep “student” networks to learn functions similar to wide and
shallow “teacher” networks.

Canonical Correlation Analysis (CCA). Canonical correlation finds bases for two matrices such
that, when the original matrices are projected onto these bases, the correlation is maximized. For
1 ≤ i ≤ p1, the ith canonical correlation coefficient ρi is given by:

ρi = max
wi

X ,wi
Y

corr(Xwi
X , Ywi

Y)

subject to ∀j<i Xwi
X ⊥ Xwj

X , Ywi
Y ⊥ Ywj

Y

(7)

The vectors wi
X ∈ Rp1 and wi

Y ∈ Rp2 that maximize ρi are the canonical weights, which transform
the original data into canonical variables Xwi

X and Ywi
Y . The constraints in equation 7 enforce

orthogonality of the canonical variables.

For the purpose of this work, we consider two summary statistics of the goodness of fit of CCA:

R2
CCA =

∑p1

i=1 ρ
2
i

p1
=
||QT

YQX ||2F
p1

(8)

ρ̄CCA =

∑p1

i=1 ρi
p1

=
||QT

YQX ||∗
p1

(9)

where || · ||∗ denotes the nuclear norm.

The mean squared CCA correlation coefficient R2
CCA is also known as Yanai’s GCD measure (Ram-

say et al., 1984), and several statistical packages report the sum of the squared canonical correlations
p1R

2
CCA =

∑p1

i=1 ρ
2
i under the name Pillai’s trace (SAS Institute, 2015; StataCorp, 2015). ρ̄CCA,

the mean CCA correlation, was previously used to measure similarity between neural network rep-
resentations in Raghu et al. (2017).

SVCCA. CCA is sensitive to perturbation when the condition number ofX or Y is large (Golub &
Zha, 1995). To improve robustness, singular vector CCA performs CCA on truncated singular value
decompositions of X and Y (Raghu et al., 2017; Mroueh et al., 2015; Kuss & Graepel, 2003). As
formulated in Raghu et al. (2017), SVCCA keeps enough principal components of the input matrices
to explain a fixed proportion of the variance, and drops remaining components. Thus, it is invariant
to invertible linear transformation only insofar as the retained subspace does not change.

Projection-Weighted CCA. Morcos et al. (2018) propose a different strategy to reduce the sensi-
tivity of CCA to perturbation, which they term “projection-weighted canonical correlation”:

ρPW =

∑c
i=1 αiρi∑
i=1 αi

αi =
∑
j

|〈hi,xj〉| (10)

where the xj are the columns of X , and the hi are the canonical variables formed by projecting
X to the canonical coordinate frame. Some algebraic manipulation reveals that PWCCA is closely
related to linear regression, since:

R2
LR =

∑c
i=1 α

′
iρ

2
i∑

i=1 α
′
i

α′i =
∑
j

〈hi,xj〉2 (11)

Neuron Alignment Procedures. Other works have searched for alignment between individual
neurons, rather than alignment between subspaces. Li et al. (2015) examine the correlation or em-
pirical mutual information matrix between the neurons in different neural networks, and attempt to
find a bipartite match or semi-match that maximizes the sum of the correlations between the neu-
rons, and then to measure the average correlations. Wang et al. (2018) propose to search for subsets
of neurons X̃ ⊂ X and Ỹ ⊂ Y such that, to within some tolerance, every neuron in X̃ can be
represented by a linear combination of neurons from Ỹ and vice versa. They find that the maximum
matching subsets are very small for intermediate layers of neural networks.

11

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Mutual Information. Among non-linear measures, one candidate is mutual information, which
is invariant not only to invertible linear transformation, but to any invertible transformation. Li
et al. (2015) previously used mutual information to measure neuronal alignment. In the context of
comparing representations, we believe mutual information is not useful. Given any pair of repre-
sentations produced by deterministic functions of the same input, the mutual information between
either representation and the input must be at least as large as the mutual information between the
representations. Moreover, in fully invertible neural networks (Dinh et al., 2017; Jacobsen et al.,
2018), the mutual information between any two layers is equal to the entropy of the network’s input.

C ADDITIONAL EXPERIMENTS

C.1 LAYER CORRESPONDENCE FOR TRANSFORMER MODELS

Layer Norm

Scale

Attention/FFN

Residual

2
4
6
8

10
12

Su
bl

ay
er

CCA (R 2
CCA)

0.3

0.4

SVCCA (R 2
CCA)

0.3

0.4

Linear Regression

0.5

0.6

0.7

CKA (Linear)

0.4
0.5
0.6
0.7
0.8
0.9

CKA (RBF 0.4)

0.5
0.6
0.7
0.8
0.9

Si
m

ila
rit

y

2
4
6
8

10
12

Su
bl

ay
er

0.3

0.4

0.3

0.4

0.4

0.5

0.6

0.6

0.7

0.8

0.6
0.7
0.8
0.9

Si
m

ila
rit

y

2
4
6
8

10
12

Su
bl

ay
er

0.1

0.2

0.1

0.2

0.3

0.2
0.3
0.4
0.5
0.6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Si
m

ila
rit

y
2 4 6 8 1012

Sublayer

2
4
6
8

10
12

Su
bl

ay
er

0.3

0.4

2 4 6 8 1012
Sublayer

0.3

0.4

2 4 6 8 1012
Sublayer

0.6

0.7

0.8

2 4 6 8 1012
Sublayer

0.5
0.6
0.7
0.8
0.9

2 4 6 8 1012
Sublayer

0.5
0.6
0.7
0.8
0.9

Si
m

ila
rit

y

Figure C.1: Similarity between the 12 sublayers of Transformer encoders, for each of the 4 possible
places in each sublayer that representations may be taken (see Figure C.2), averaged across 45 pairs
of models trained from different random initializations. All similarity indices broadly reflect the
structure of the network, although there are clear differences.

In Figure C.1, we show similarity between the 12 sublayers of the encoders of 45 pairs of Trans-
former models (Vaswani et al., 2017) trained from different random initializations to perform En-
glish to German translation. Each Transformer sublayer contains four operations, shown in Fig-
ure C.2, and results vary based which operation the representation is taken after. Table C.1 shows
the accuracy with which we can identify corresponding layers between network pairs by maximal
similarity. All similarity indexes achieve non-negligible accuracy and thus pass the sanity check,
although RBF CKA and R2

CCA typically perform better than other methods.

The Transformer architecture alternates between self-attention and feed-forward network sublayers.
The checkerboard pattern in similarity plots for the Attention/FFN layer in Figure C.1 indicates that
representations of feed-forward network sublayers are more similar to other feed-forward network
sublayers than to self-attention sublayers, and similarly, representations of self-attention sublayers
are more similar to other self-attention sublayers than to feed-forward network layers. CKA also
reveals a checkerboard pattern for activations after the channel-wise scale operation (before the self-

12

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Layer Normalization

Channel-wise Scale

Self-Attention or
Feed-Forward Network

+Residual

From Previous Sublayer

To Next Sublayer

Figure C.2: Architecture
of a single sublayer of the
Transformer encoder used
in experiments. The en-
coder includes 12 sublayers,
alternating between self-
attention and feed-forward
network sublayers.

Index Layer Norm Scale Attn/FFN Residual
CCA (ρ̄) 85.3 85.3 94.9 90.9
CCA (R2

CCA) 87.8 87.8 95.3 95.2
SVCCA (ρ̄) 78.3 83.0 89.5 75.9
SVCCA (R2

CCA) 85.4 86.9 90.8 84.7
PWCCA 88.5 88.9 96.1 87.0
Linear Reg. 78.1 83.7 76.0 36.9
CKA (Linear) 78.6 95.6 86.0 73.6
CKA (RBF 0.2) 76.5 73.1 70.5 76.2
CKA (RBF 0.4) 92.3 96.5 89.1 98.1
CKA (RBF 0.8) 80.8 95.8 93.6 90.0

Table C.1: Accuracy of identifying corresponding sublayers based
maximum similarity, for 45 pairs of architecturally identical 12-
sublayer Transformer encoders. For asymmetric indexes (PWCCA
and linear regression) we symmetrize the similarity matrix as S+ST.
CKA RBF kernel parameters are specified as the fraction of the me-
dian distance used as the standard deviation. Results not signifi-
cantly different from the best result are bold-faced (α = 0.05, jack-
knife z-test).

attention/feed-forward network operation) that other methods do not. Because CCA is invariant to
non-isotropic scaling, CCA similarities before and after channel-wise scaling are identical. Thus,
CCA cannot capture this structure, even though it is consistent across different networks.

C.2 ANALYSIS OF THE SHARED SUBSPACE

Figure C.3: The shared subspace of two Tiny-10 networks A and B trained from random initializa-
tion is spanned primarily by the eigenvectors corresponding to the largest eigenvalues. Each row
represents a different network layer. Note that the average pooling layer has only 64 units. Left:
Scaling of the eigenvectors qi of the representational similarity matrixXXT from network A by net-
works A and B. Orange lines show ||XXTqi||2, i.e. the eigenvalues. Purple dots show ||Y Y Tqi||2,
the scaling by the network B. Right: Cosine of the rotation by network B, ||qiY Y Tqi||2/||Y Y Tqi||2.

13

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Equation 5 suggests a way of further elucidating what CKA is measuring, based on analyzing the
action of one Gram matrix L (Y Y T in the linear setting) when applied to the eigenvectorsQK of the
other Gram matrixK (XXT in the linear setting). By definition, the columns ofKQK are scaled by
the eigenvalues ofK and are not rotated. The degree of scaling and rotation by L thus indicates how
similar the action of L is to K, for each eigenvector of K. For visualization purposes, this approach
is somewhat less useful than the CKA summary statistic, since it does not collapse the similarity to
a single number, but it provides a more complete picture of what CKA measures. Figure C.3 shows
that, for large eigenvectors, XXT and Y Y T have similar actions, but the rank of the subspace where
this holds is substantially lower than the dimensionality of the activations. In the penultimate (global
average pooling) layer, the dimensionality of the shared subspace is approximately 10, which is the
number of classes in the CIFAR-10 dataset.

C.3 OTHER SVCCA THRESHOLDS

2 4 6 8
Layer

2
4
6
8

La
ye

r

Threshold 0.5

0.1
0.3
0.5
0.7

2 4 6 8
Layer

Threshold 0.6

0.1
0.3
0.5
0.7
0.9

2 4 6 8
Layer

Threshold 0.7

0.1
0.3
0.5
0.7
0.9

2 4 6 8
Layer

Threshold 0.8

0.1
0.3
0.5
0.7
0.9

2 4 6 8
Layer

Threshold 0.9

0.1
0.3
0.5
0.7
0.9

2 4 6 8
Layer

Threshold 0.99

0.3

0.5

0.7

Figure C.4: R2
CCA, the sum of squared CCA singular values, for additional thresholds beyond the

0.99 threshold suggested by Raghu et al. (2017). No threshold reveals the structure of the network.

C.4 CKA RESULTS FOR OTHER CNN ARCHITECTURES

2 4 6 8
Layer

2
4
6
8

La
ye

r

BN vs. BN

2 4 6 8
Layer

No BN vs. No BN

2 4 6 8
Layer

BN vs. No BN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
KA

 (L
in

ea
r)

Figure C.5: Linear CKA between networks with and without batch normalization trained from
different random initializations. The largest difference between networks with and without batch
normalization appears to be at the last convolutional layer. Optimal hyperparameters were separately
selected for the batch normalized network (93.9% average accuracy) and the network without batch
normalization (91.5% average accuracy).

15 30 45 60
Layer

15

30

45

60

La
ye

r

All Layers

8 16 24
Layer

8

16

24

Even Layers

8 16 24
Layer

8

16

24

Odd Layers

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Si
m

ila
rit

y

Figure C.6: Linear CKA between layers of a ResNet-62 model shows no pathology. The grid pattern
for ResNets in the left panel arises from the architecture. Right panels show similarity separately
for even layer (post-residual) and odd layer (block interior) activations.

C.5 SIMILARITY BETWEEN DIFFERENT ARCHITECTURES WITH CCA-BASED METHODS

14

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

2

4

6

8

Ti
ny

-1
0

La
ye

r

CCA (ρ̄)

0.4

0.5

0.6

0.7

CCA (R 2
CCA)

0.2

0.3

0.4

0.5

0.6
SVCCA (ρ̄)

0.4

0.5

0.6

0.7

0.8
SVCCA (R 2

CCA)

0.2
0.3
0.4
0.5
0.6

2 4 6 8 10 12
ResNet-14 Layer

2

4

6

8

Ti
ny

-1
0

La
ye

r

PWCCA

0.5

0.6

0.7

0.8

2 4 6 8 10 12
ResNet-14 Layer

Linear Regression

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 4 6 8 10 12
ResNet-14 Layer

CKA (Linear)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 4 6 8 10 12
ResNet-14 Layer

CKA (RBF)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure C.7: Similarity between layers of different architectures (Tiny-10 and ResNet-14) for all
methods investigated. Only CKA reveals meaningful correspondence. SVCCA results resemble
Figure 7 of Raghu et al. (2017). All plots show similarity on the CIFAR-10 training set.

C.6 CKA RESULTS FOR NETWORKS AT INITIALIZATION

5 10 15
Layer

5

10

15

La
ye

r

Same Net

5 10 15
Layer

5

10

15
Different Nets

5 10 15
Layer

5

10

15
Vs. Trained

0.2
0.4
0.6
0.8
1.0

C
KA

 (L
in

ea
r)

Figure C.8: Similarity of the Plain-18 network at initialization. Left: Similarity between layers of
the same network. Middle: Similarity between untrained networks with different initializations.
Right: Similarity between untrained and trained networks.

5 10 15 20 25 30

Layer

5
10
15
20
25
30

La
ye

r

Plain-34

10 20 30 40 50 60

Layer

10
20
30
40
50
60

Plain-66

10 20 30 40 50 60

Layer

10
20
30
40
50
60

ResNet-62

0.2
0.4
0.6
0.8
1.0

C
KA

 (L
in

ea
r)

Figure C.9: Similarity between layers at initialization for deeper architectures.

D ARCHITECTURE DETAILS

All non-ResNet architectures are based on All-CNN-C (Springenberg et al., 2014), but none are
architecturally identical. The Plain-10 model is very similar, but we place the final linear layer after
the average pooling layer and use batch normalization because these are common choices in modern
architectures. We use these models because they train in minutes on modern hardware.

15

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Tiny-10
3× 3 conv. 16-BN-ReLu ×2
3× 3 conv. 32 stride 2-BN-ReLu
3× 3 conv. 32-BN-ReLu ×2
3× 3 conv. 64 stride 2-BN-ReLu
3× 3 conv. 64 valid padding-BN-ReLu
1× 1 conv. 64-BN-ReLu
Average pooling
Logits

Table D.1: The Tiny-10 architecture, used in Figure 1 and Table 1. The average Tiny-10 model
achieved 89.4% accuracy.

Plain-(8n+ 2)
3× 3 conv. 96-BN-ReLu ×(3n− 1)
3× 3 conv. 96 stride 2-BN-ReLu
3× 3 conv. 192-BN-ReLu ×(3n− 1)
3× 3 conv. 192 stride 2-BN-ReLu
3× 3 conv. 192 BN-ReLu ×(n− 1)
3×3 conv. 192 valid padding-BN-ReLu
1× 1 conv. 192-BN-ReLu ×n
Average pooling

Table D.2: The Plain-(8n + 2) architecture, used in Figures 2 and 3. Mean accuracies: Plain-10,
93.9%; Plain-18: 94.8%; Plain-34: 93.7%; Plain-66: 91.3%

Width-n
3× 3 conv. n-BN-ReLu ×2
3× 3 conv. n stride 2-BN-ReLu
3× 3 conv. n-BN-ReLu ×2
3× 3 conv. n stride 2-BN-ReLu
3× 3 conv. n valid padding-BN-ReLu
1× 1 conv. n-BN-ReLu
Average pooling
Logits

Table D.3: The architecture used for width experiments in Figure 4.

16

	Introduction
	Comparing Similarity Structures
	CKA versus CCA
	Results
	A Sanity Check for Similarity Indexes
	CKA Reveals Network Pathology
	Using CKA to Understand Network Architectures
	Similar Representations Across Datasets

	Conclusion
	Invariance Properties of Similarity Indexes and Their Implications
	Invariance to Invertible Linear Transformation
	Invariance to Orthogonal Transformation
	Invariance to Isotropic Scaling

	Related Similarity Indexes
	Additional Experiments
	Layer Correspondence for Transformer Models
	Analysis of the Shared Subspace
	Other SVCCA Thresholds
	CKA Results for Other CNN Architectures
	Similarity Between Different Architectures with CCA-Based Methods
	CKA Results for Networks at Initialization

	Architecture Details

